基于局部最优模型的无人机位置调整策略与仿真定位
摘 要
纯方位无源定位即用被动式探测设备接收辐射源的方位信号并进行定位,设备本身不发出任何电磁信号,对无人机遂行编队飞行的位置调整及阵型保持具有重要意义。本文主要研究了圆形编队以及锥形编队的无人机阵型,基于局部最优模型与仿真实验,建立了无人机的定位模型以及无人机位置的调整策略。
针对问题一,首先讨论了圆形阵列中三架发出信号无人机的四种排布方式,并在极坐标下根据正弦定理分别讨论各无人机间的几何关系,将无人机的定位问题转化为方程问题。其次,求解方程得出无人机位置的一般解,建立了被动接受信号无人机定位模型,结果见式 (1)-(2).随后,为解决特殊情况下方程解的不唯一性,以及位于信号源连线角平分线上无人机位置的不确定性,提出了假设:已知信号源发射电磁波的次序。最后,给出该背景下无人机的位置调整策略:先沿圆的径向,再沿圆的切向进行调整,从而使模型更具完整性。
针对问题二,首先提出并证明引理:对于正九边形的圆周角α,存在正整数k.使得α=20°k; 对于伪圆周角β,存在正整数l, 使得β=10°(2l-1)。其次基于此引理,讨论未知编号无人机对应的方位角与圆心角的两种相对关系,运用集合元素唯一性证明未知编号信息源发射信号的唯一性,反推出发射信号无人机的编号,将问题划归为问题一中的定位模型,在接受方向信息角与理想值误差±5°范围内,得出仅再需要一架无人机作为信号源即可确定接受信号无人机的位置的结论。
针对问题三,对于初始位置略有偏差的圆形编队,首先对一般情况下无人机初始位置进行预处理:即将无人机j沿径向调整,使其从无人机0.1两架无人机接收到的方位角调整为90°-20°(j-1)。其次通过数学证明,预处理后可以将无人机的距离误差自15%缩小至 5%。随后,由于各无人机之间的信息不共享,故不能出现通过任何全局的信息对无人机做出调整。基于局部最优模型分两种方案进行调整策略的研究:每次选取圆周上三或两架无人机作为信号源,目标函数为接收信号无人机对应的方位角向量和标准值向量的范数平方,使其最小化。最后,对该模型进行仿真模拟,得出对于给定初始值的两种方案位置的调整结果,如表5所示。比较两个方案全局检验误差值的收敛速度、收敛值,最终估算总发射电磁波信号次数,得出方案二,即每次在圆周上选取两架无人机发射信号,更优。
针对问题四,对于初始位置略有偏差的锥形编队,首先提出并证明三条引理:给定空间中近似成正三角形的三个点A,B,C与一在边AC附近的点D,可将△ABC调整为严格正三角形;可将点D调到边AC上,并使之成为定比分点:在△ABC中心附近的点可调整至几何中心。其次,将无人机分为中心对称的三类,基于引理按贪心策略分三步调整:由引理一调整顶点处三架无人机:由引理二将三角形每条边上的无人机距离等分:由引理三调正三角形的中心点。随后,进行计算机仿真实验,生成随机数实现模型。最后进行三维平面拟合,定义平面化检验函数检验调整方案的优劣性。平面化检验函数值由3.893降至0.206,降低了94.7%,准确性良好。
本文最后进行了无人机调整模型的灵敏性分析,对飞行阵列的精确点进行服从正态分布的微小扰动。取十组数据集进行全局误差分析。结果表明误差值随着循环次数迅速下降并收敛 10⁷-10⁵, 可见局部优化模型具有良好的鲁棒性。
关键词:局部最优调整 贪心策略微小量仿真几何关系三维平面拟合
一、 问题重述
1.1问题背景
相较于有源(主动) 传感器不仅发射信号,还接收从目标返回的信号的特点,无源(被动) 传感器不发射任何信号,只接收来自目标的信号[1-2]。在无人机遂行编队飞行中,为了尽可能保持电磁静默,故采用纯方位无源定位的方法调整无人机的位置,即由编队中部分无人机发射信号、其余无人机被动接收信号,仅根据方向信息进行定位。在该问题的无人机编队中,每架无人机的编号固定,且无人机之间的相对位置保持不变,但具体位置与规划位置略有偏差。研究纯方位无源定位对无人机阵型的训练和管理具有重要意义。
1.2问题要求
基于上述背景,要求建立数学模型解决如下问题:
问题的无人机阵型分为两类:1) 圆形编队:由10架无人机组成,其中9架无人机(编号FY01~FY09) 均匀分布在某圆周上,另1架无人机(编号FY00) 位于圆心。2) 锥形编队:由15架无人机组成(编号FY01-FY15),且直线上相邻两架无人机的间距相等。无人机基于自身感知的高度信息,均保持在同一个高度上飞行。
问题一:圆形编队中,位于圆心的无人机和圆周上另2 架无人机发射信号。发射信号的无人机位置无偏差且编号已知,被动接受信号的无人机位置略有偏差,建立被动接收信号的无人机定位模型。
问题二:圆形编队中,FY00和FY01以及编队中若干编号未知的无人机发射信号。发射信号的无人机位置无偏差,被动接受信号的无人机位置略有偏差。除FY00和FY01外,还需要几架无人机发射信号才能实现被动接收信号无人机的有效定位。
问题三:圆形编队中,圆周半径为100m,初始时刻无人机的位置略有偏差。根据题目数据,要求给出合理的无人机位置调整方案。即通过多次调整,每次选择编号为FY00的无人机和圆周上最多3架无人机遂行发射信号,其余无人机根据接收到的方向信息调整到理想位置,使得9架无人机最终均匀分布在某个圆周上。
问题四:锥形编队中,考虑纯方位无源定位的情形,设计无人机位置调整方案。
二、问题分析
2.1问题一的分析
该间本质上是一个方程问题。由于已知位置的三架无人机位置无偏差,故可建立极坐标并运用正弦定理计算出被动接受信号无人机的位置。考虑到圆形阵列的特殊性,两架圆周上发出信号的无人机具有四种位置关系,故需对其进行分情况讨论。另外,注意到九等分圆的轴对称性,因此最终位置的解有两个,需假设接收信号无人机已知自身的编号。计算出待定位无人机的位置后,可根据圆内角、圆周角、圆外角的性质给出其位置的调整方案,使之可以准确地消除位置偏差。
2.2问题二的分析
该问本质上是问题一的变式,核心思路是在接受容许接受方向信息角误差范围内,如何将其化归成问题一中被动接收信号无人机的定位模型。考虑到圆形编队及
其内接正九边形的性质,可以提出并证明正九边形圆周角与伪圆周角的数学规律,并基于此规律假设并证明未知位置无人机发射信息集合的唯一性,即可反推出未知位置无人机的编号。若如上假设得证,则仅再需要一架无人机即可确定被动接受信号无人机的位置。
2.3问题三的分析
该问本质上是一个局部优化问题。虽然无人机的初始位置与正九边形顶点有微小偏差,但我们可以通过一定手段(详见正文),称为预处理,将极径误差大幅下降。预处理后,分两种方案建立局部最优模型,即每次均匀选取圆周上两或三架无人机发射信号,目标函数为对应的方位角向量和标准值向量的范数平方的最小值。为了评价两种方案的优劣性,可根据目标函数的和设置误差函数比较两方案全局误差的收敛速度和收敛值,进而比较需要发射的次数。随后代入题目中已给的初始数据验证,并利用计算机模拟生成初始位置的随机数来衡量模型的灵敏性。
2.4问题四的分析
该问可以通过贪心策略来实现。本题抓住锥形集群的几何特点:正三角形高度对称性以及大量三点共线辅助移动调整。考虑到正三角形的几何性质,提出三种独立的调整策略:保证每个小三角形是正三角形,且点与点之间共线; 保证大三角形边上每个点等分:保证中间三角形中心准确。因此,可以基于此假设并证明三条引理,即给定空间中近似成正三角形的三个点与一在其中一边附近的点,可通过将其调整为严格的正三角形; 可以将点调至共线并使之成为定比分点; 在三角形中心附近的点可通过微调使其成为其中心。随后将 15个点分成三类,逐步调整。进行计算机的仿真模拟微小量的调整,随机生成初始数据,并分别计算三个引理所对应的误差值与锥形阵列全局的误差值(通过三维平面拟合求误差平方和),评价模型的优劣性。
综上所述,四个问题的分析思路可表示如下:
三、 模型假设
3.1假设无人机间信息不共享
接收信号的无人机是被动接收的,不能发射电磁波信号,故无人机间的信息不共享。即无人机i不能利用其他无人机j接收到的方向信息。
3.2假设每架无人机均知道自己的编号
结合实际情况,每架飞机在做出调整时均知道自己飞机的编号。
3.3假设已知无人机信号源的信号发射次序
为位于信号源连线角平分线上无人机位置的不确定性,故需作出假设。
3.4假设无人机圆形编队圆周上的无人机角度偏差不超过±5°
无人机的位置相对准确位置略有偏差,故合理地假设方向信息角度偏差不超过±5°。另外,假设偏差不超过±5°,接收信号无人机可以根据接收到的角度推断出该角的理想值。例如,假设无人机接受到47°的方向信息,那该角的理想值即为50°。
3.5假设无人机位置调整可以沿任意方向
无人机的飞行方向与设计性能相关[3]。正常无人机在空中拥有了12个自由度,可以任意飞行:然而如果是四轴无人机,基本上只能有限角度倾斜着飞。
3.6假设无人机不可以沿某一方向移动指定距离
在对问题三模型进行求解时,设置搜索邻域、搜索步长是为了对无人机实际飞行情况进行仿真模拟。实际情况是无人机在原来位置附近任意移动,搜索目标函数最小值。
3.7假设当误差小于一定值时,可以认为无人机以正九边形遂行编队飞行
考虑到实际情况,无人机群构成严格正九边形是不可能的,总会有一定的误差。所以我们认为,当无人机群构成的九边形与正九边形误差小于一定值时,即认为无人机群构成正九边形。
四、 符号说明
符号 |
说明 |
α₁ |
被动机关于前两架主动机的方位角 |
C₂ |
被动机关于一、三两架主动机的方位角 |
α₃ |
被动机关于二、三两架主动机的方位角 |
(R₁θ) |
极坐标下第三架主动机的位置 |
(r,φ) |
极坐标下被动机的位置 |
f₁,9(,,..,v₄ Eₖ |
局部最优模型的目标函数 半径误差 |
6. 角度误差
η 局部最优模型循环次数阈值
σ 局部最优模型总循环次数
μ₁ 误差函数
€ 最小值平面化检验函数
(R₁,θ₂) 点A₄的精确位置
五、 模型的建立与求解
5.1问题一:被动接受信号无人机的定位调整模型
根据题意将该问题分为两个步骤。首先在极坐标下建立方程,分两种情况讨论并计算被动接受信号无人机的方位角,得出无人机方位角关于发射信息的解析解:其次从几何角度给出位置稍有偏差的无人机的调整方案,从而建立被动接受信号无人机的定位调整模型。
5.1.1被动机定位模型的建立
由于无人机的分布呈辐射对称的状态,故圆周上第一架主动发出信号的无人机(主动机) 的选取具有任意性,不妨FY01为第一架主动机。以 FY00为原点,FY00与FY01连线方向为极轴,逆时针为正方向建立极坐标系。
定义变量环境:设极轴与原点和另一架主动机的连线的夹角为θ,与原点和被动接受信号无人机(被动机) 的连线夹角为φ:用编号的大小来衡量主动机的次序,编号越小次序越低。被动机关于前两架主动机的方位角为α₁,被动机关于一、三两架主动机的方位角为α₂,被动机关于二、三两架主动机的方位角为α₃。由于主动机的位置无偏差,被动机的位置略有偏差,故设圆周上两架主动机的位置分为(R,0).(R,θ), 被动机的位置为(r,φ)。
故该无人机定位问题可化归为方程问题进行求解。两架圆周上的被动机的分布有两种情况, 即φ>θ与θ>φ。而θ与φ的取值范围则有四种情况, 即θ∈[0,π)∩φ∈[0,π) . θ∈[0,π)∩φ∈[π,2π) . θ∈[π,2π)∩φ∈[0,π) .θ∈[π,2π)∩φ∈[π,2π)。易证θ与φ的取值范围不影响数值解的大小,仅影响解的
5
正负, 故仅从θ与φ的大小关系出发进行讨论。以θ∈[0,π)∩φ∈[0,π) 为例,设两架第二架主动机分为FY02,FY04: 两架被动机分为FY04,FY02, 具体图示见图2-3。
根据正弦定理,可列得方程如下:
|
与 |
|
即
5.1.2被动机定位模型的求解
两式相除,得
→tan-cosα1+cosα2+θsinα1sinα2θ-sinα2
则上述方程的解为
|
|
上述两组解为被动机位置的解析解,其极坐标为( (n₁,φ₁)< |