2020年高教社杯全国大学生数学建模竞赛A题代码和思路

回焊炉温曲线优化控制

摘要

回焊炉通过设置各个温区的温度,加热集成电路板,能够将电子元件自动焊接到板子上,在表面贴装工艺技术中起到关键作用。回焊中的焊接区域中心温度变化对产品质量影响尤其重要。本文从物理机理方面入手建立模型,分析了电路板在回焊炉中的温度变化过程,对回焊炉温曲线的优化与控制进行了研究。

对于问题一,首先通过一维稳态传热模型确定回焊炉中各区域的温度分布并结合附件数据考虑区域之间边界处的影响,之后考虑电路板在炉中的温度变化情况,考虑热传导、热对流两种方式,对于升温过程建立基于能量守恒定律的微分方程组,针对不同区域使用不同热时间常数拟合:对于降温过程建立基于牛顿冷却公式的模型,得到对焊接区域中心温度变化曲线的数学模型,利用最小二乘法建立优化模型,拟合实际数据来求解未知参数的最优估计,得到参数对实际数据曲线拟合较好。之后代入第一问新数据计算,绘出了该情况下的炉温变化曲线。得到小温区3中点温度为129.0153℃,小温区6中点为163.9644℃, 小温区7中点为174.8322℃及小温区8结束处温度为207.8417℃。并将每隔0.5S的数据存入到 result. csv 中。

对于问题二,我们根据题目中给出的各温区设定温度值,以题目中的制程界限为约束条件建立非线性规划模型。在题目中给出的传送带过炉速度范围内进行多重搜索的方法,先确定一个大致范围再以小步长进行精细的搜索; 对于每一个过炉速度都可以基于第一问中已经得到的机理模型得到炉温曲线,从而可以判断此时的曲线是否满足制程界限。搜索得到的最大过炉速度为77.85cm/ min,此时刚好能满足所有制程界限。

对于问题三,以题目中的制程界限以及各温度区设定温度值和传送带过炉速度的范围限制为约束条件,以炉温曲线超过217℃到峰值温度所覆盖的面积为优化目标,建立单目标优化模型来求取面积的最小值。利用模拟退火算法迭代20000次进行求解,得到的最优方案为184.2181°C(小温区1~5) 、189.8133°C(小温区6) 、227.5226°C (小温区7)、264.0700°C(小温区8~9), 传送带过炉速度为90.0982cm/ min。此时得到的炉温曲线超过217℃到峰值温度所覆盖的面积为406.2318。

对于问题四,在问题三的基础上引入对炉温曲线超过217℃部分关于最高温两边对称性的要求。首先定义对称性衡量指标,将最高温两边等量数据点之间的均方差作为衡量指标,结合题目中的制程界限以及各温度区设定温度值和传送带过炉速度的范围限制等约束条件,建立多目标优化模型。将对称度衡量指标与覆盖面积进行处理,选择合适的权值之后,我们将多目标优化模型转化为单目标优化模型,仍然采用模拟退火算法来求解最优解。得到的最优方案为183.5822°C(小温区1~5)、190.5021°C(小温区6)、227.1962°C(小温区7)、264.4834°C(小温区8~9),传送带的过炉速度为90.1316cm/ min,超过217℃到峰值温度所覆盖面积为409.0650,达到了接近最优解的值; 得到此时的对称性指标值为21.6865,此时画出的炉温曲线在217℃以上部分近似对称,温度上升斜率和下降斜率略有区别。

最后对模型优缺点进行了分析总结,并对存在的缺点提出了改进方案设想,还提出了推广的方向。

关键词 传热模型 炉温曲线 多重搜索算法 模拟退火算法 多目标优化

一、问题重述

电子信息产业在我国发展迅速,促进了表面贴装工艺(SMT)的技术进步。在集成电路板的生产过程中,要将安装有各种电子元器件的印刷电路板放入回焊炉中进行回流焊,使得电子元器件能够自动地焊接到印刷电路板上。回焊炉中各部分的温度保持对生产产品的质量起到关键的作用。回流焊作为表面贴装工艺的核心工艺环节,主要通过回焊炉的温度曲线优化控制来不断提高生产效率与产品质量。

回焊炉内部从功能角度来划分,主要分为4个大温区,分别是预热区、恒温区、回流区和冷却区。运行时将需要加工的电路板放置在回流炉的传送带上,以恒定的速度进入炉中进行加工。本题所考虑的回流炉实际有11个长为30.5cm的小温区,每个小温区之间有5cm的间隙,除此之外有炉外区域包括炉前和炉后区,每个部分长度为25cm。回焊炉启动后会将各个小区的温度迅速升到指定温度并达到稳定,然后方可进行回焊,而炉外区域、小温区之间间隙不做温度控制,这些区域的温度以及各温区边界温度都受相邻温区的温度影响。生产车间的温度则保持在25℃。

在设定各温区的温度和传送带的恒定过炉速度后,使用温度传感器来测量焊接区域中心的温度得到一条温度变化的曲线,称之为炉温曲线。温度传感器在被测区域温度超过30℃时开始工作。实际生产时为了控制和改善产品质量,需要调节各温区的设定温度以及传送带的过炉速度。某次实验设定的各温区温度为:小温区1~5设为175°C,小温区6设为195℃, 小温区7设为235℃, 小温区8~9设为255℃, 小温区10~11设为25°C。传送带的过炉速度则设置为70cm/ min。焊接区域的厚度设置为0.15mm。在此基础上,各温区的温度可以进行10℃以内的调整,其中小温区1~5温度一致、小温区8~9温度保持一致、小温区10~11温度保持25℃。传送带的过炉速度可以在65cm/ min~110cm/ min之间变化。在电路板进行回焊操作时,炉温曲线应满足题目中表1给出的制程界限,对温度上升斜率、温度下降斜率、温度上升过程中在 150℃~190℃的时间、大于217℃的时间和峰值温度做出了要求。

问题一:

建模分析焊接区域的温度变化规律,假设过炉速度调整为78cm/ min,小温区1~5设置为173°C, 小温区6设置为198°C, 小温区7设置为230°C, 小温区8~9设置为257°C,通过模型计算得到焊接区域中心温度变化情况。列出指定位置的焊接区域中心温度,绘制炉温曲线,将每隔0.5S的温度数据存放到表格中。

问题二:

小温区1~5设为182°C, 小温区6设为203°C, 小温区7设为237°C, 小温区8~9设为254°C,计算允许达到的传送带的最大过炉速度。

问题三:

实际过程中焊接区域中心的温度不能太长时间均处于217℃以上,峰值温度也不能设的太高。理论上超过217℃到峰值温度所覆盖的面积越小,炉温曲线越理想。确定满足此要求的最优炉温曲线,给出各温区的设定温度值以及传送带的过炉速度,给出面积大小。

问题四:

焊接过程中希望炉温曲线满足制程界限的同时,尽量使得炉温曲线以峰值温度为中心线的两侧超过217℃的部分对称。在问题三的基础上,进一步给出最优炉温曲线。给出各温区的设定温度值以及传送带的过炉速度,和对应的指标值。

二、问题分析

2.1问题一的分析

对于问题一,我们需要首先根据题目中给出的各个小温区的设定温度值,来计算稳定状态下回焊炉中各个温区、温区之间的间隙以及炉前区域、炉后区域等的温度分布。通过傅里叶定律推导一维稳态传热过程,确定在温区之间间隙的温度分布以及炉前区域的温度分布等。由题中已给出的区域长度信息,以及传送带的过炉速度,我们可以计算出在每个小温区和每个间隙经过的时间。

之后对电路板在回流炉中的焊接区域中心温度变化进行分析。利用垂直表面的热流密度与电路板表面积的乘积等于整个电路板得到的热能的关系,由于电路板厚度很小且导热系数很高,可以近似地认为整个电路板的温度相等均匀分布。从而导出一个电路板两面与相同温度热源进行热对流后任意时间的温度公式,因为在每个恒定温度的小温区的经过时间已知,我们可以得到电路板经过每个小温区后的温度变化情况。之后对于间隙中温度不恒定的情况,采用微分的思想,将间隙划分为很多宽度很小的区域,从而可以近似地认为每个区域温度相等,采用之前导出的公式进行计算。对于降温,采用牛顿冷却模型进行处理,列出常微分方程之后进行离散化处理得到差分方程,从而可以得到冷却时焊接区域中心温度的大致变化情况。

根据上述的模型,代入题目中附件给出的数据进行拟合来反推求解模型中的一些未知的参数。求解过程中发现降温过程中降温速率变化与理论不相符,得出回流区高温可能影响到冷却区的边界附近的温度,在模型中对其进行考虑;发现恒定的热时间常数使得峰值温度无法到达要求范围,了解到热时间常数随温度升高而降低,在模型中考虑不同的温区对应不同的热时间常数。修正模型之后根据数据再次拟合,得到模型中未知量。(热时间常数、对流系数等) 的值。

根据已经求得的模型,代入第一问中的新的各个温区的温度和传送带的过炉速度进行计算,从而得到焊接区域中心温度的变化情况,得到题目中要求的一些参数。

2.2问题二的分析

问题二给出了各温区的设定温度,要求我们在此基础上确定允许的最大传送带过炉速度。这是一个非线性规划问题,目标是求出传送带过炉速度的最大值,约束条件是题目中所给的制程界限。传送带的过炉速度调节范围为65~100cm/ min,利用多重搜索算法,先设定较大的搜索步长,确定速度的大致范围,再设置较小的搜索步长进行精确搜索。对于每一个搜索的过炉速度值,利用问题一解得的模型,都能得到对应的炉温曲线图,以及各个时间点焊接区域中心的温度。判断当前的炉温曲线能否满足约束条件,若满足则保留当前的过炉速度值,否则舍去,直到搜索结束,找到最大的满足约束条件的过炉速度大小。

2.3问题三的分析

问题三需要我们给出最优炉温曲线,以及各温区的设定温度和传送带的过炉速度,使得超过217℃到峰值温度所覆盖的面积最小。这是一个优化问题,优化目标是求覆盖面积的最小值,约束条件一是题目中所列出的制程界限,二是各温区设定温度及传送带的过炉速度调节范围限制。通过以上分析建立优化模型,以各温区的设定温度和传送带过炉速度为变量,利用模拟退火算法进行求解。

2.4问题四的分析

问题四需要我们在第三问的基础上,进一步考虑炉温曲线在217℃以上的部分升温和降温的过程尽量对称,同时要保证符合制程界限与各温区设定温度及传送带过炉速度调节范围的限制,并使得超过217℃到峰值温度所覆盖的面积仍能达到一个较小值。这

3

是一个多目标优化问题,一个目标是覆盖的面积,一个目标是曲线的对称度。一般可以为要优化的目标分配权值后再进行优化。我们首先要给出一个衡量对称度的量,我们取炉温曲线在217℃以上的部分,取最高温对应的时间和两个边界时间点,将两个边界时间点相减除以时间步长得到数据点总数,以最高温对应的时间点向时间正方向和负方向各取数据点总数的一半的数据,取正负方向各个对应点的温度值求均方差值,作为对称度衡量的指标。将面积和对称度数量级进行处理,使得两者的数量级一致,为两个因素分配合理的权值之后,得到一个多目标的优化模型,以各温区的设定温度和传送带过炉速度为变量,同样使用模拟退火算法来进行求解。

三、模型假设

1、假设观测误差、随机误差和连续问题离散化所产生的误差对本题的计算是没有影响的。

2、在回焊炉中传热方式仅考虑热传导、热对流,假设热辐射对本题结果的计算没有影响。

3、假设回焊炉温度高于室内温度的区域(即加热区域)的温度能够保持不变,每个温区内的温度均匀分布。

4、假设在温度变化不大的情况下热时间常数和热空气和电路板间的热对流系数均保持不变。

四、符号说明及名词定义

符号

含义

T₁(i=1, 2, 3, 4, 5)

各个温区的设定温度

T

焊接区域中心温度

τ₁(i=1, 2)

两个温区分别对应的热时间常数

h

热对流系数

△t

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

宁安我

谢谢鼓励,您为支持开源做出贡献

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值