本地部署deepseek-r1:7B模型

第一步:下载安装ollama

打开ollama官网,手动下载ollama模型:附官网链接:

Ollama

第二步:查看ollama是否安装成功

windows输入win+r打开命令框输入cmd,打开命令窗口

在命令窗口输入ollama  -v查看版本

第三步:安装deepseek版本

      注意这里安装的版本,如果是平常使用1.5b版本完全可以,7b要求显卡是4060,按照各自需求进行安装版本,这里我安装的是7b版本

安装命令:ollama run deepseek-r1:7B   上图是安装完成后,再次运行这个命令则进入到deepseek中,此时我们已经安装完成,但是是在命令行窗口执行,我们可以装一个ai的可视化界面,这里我装的是chatbox:

第四步:安装可视化界面

chatbox的下载连接:

https://download.chatboxai.app/releases/Chatbox-1.9.8-Setup.exe

安装完成后,运行chatbox,左下角打开设置,按照以下进行配置

配置ollama模型,api域名为:http://127.0.0.1:11434,模型按照自行安装的的版本进行选择

第五步:询问deepseek问题

下面附上deepseek喂饭指令,多多训练提问思维,感兴趣的可以自行保存

「Deepseek喂饭指令.pdf」,复制整段内容,打开最新版「夸克APP」即可获取。
畅享原画,免费5倍速播放,支持AI字幕和投屏,更有网盘TV版。
/~f38d35wQew~:/
链接:https://pan.quark.cn/s/f749f0bfc015

### 如何在本地部署 DeepSeek-R1-7B 模型 为了成功地在本地环境中安装并运行 DeepSeek-R1-7B 模型,需遵循一系列特定的操作流程。此过程涉及环境准备、依赖项配置以及最终启动服务等多个方面。 #### 准备工作 确保计算机上已预先安装 Python 和 pip 工具,并且拥有足够的硬件资源来支持大型语言模型的运算需求[^1]。 #### 创建虚拟环境 建议创建一个新的Python虚拟环境以隔离项目所需的库文件和其他软件包版本冲突的风险。 ```bash python3 -m venv myenv source myenv/bin/activate # Linux/MacOS myenv\Scripts\activate # Windows ``` #### 安装必要的库 根据所选框架的不同(Ollama/vLLM/Transformers),需要下载对应的Python库。对于Hugging Face Transformers而言,则执行如下命令: ```bash pip install transformers torch sentencepiece ``` #### 下载预训练模型 通过 Hugging Face Model Hub 获取指定名称下的DeepSeek-R1-7B权重参数。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "deepseek/R1-7B" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) ``` #### 配置推理设置 调整超参如温度、top-k采样等选项可以优化生成质量;同时考虑GPU加速的可能性提高效率。 ```python import torch device = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(device) # 设置推理参数 temperature = 0.9 max_length = 50 ``` #### 运行预测实例 最后一步就是编写简单的测试脚本来验证整个系统的正常运作情况。 ```python input_text = "Once upon a time," inputs = tokenizer(input_text, return_tensors="pt").to(device) outputs = model.generate(**inputs, max_length=max_length, temperature=temperature) generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) print(generated_text) ``` 完成上述操作之后,即实现了 DeepSeek-R1-7B 在个人电脑上的私有化部署
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

行路独迷见

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值