一、证据理论介绍
证据理论(Dempster-Shafer Theory),也被称为信度函数理论或DS理论,是一种处理不确定性和不完全信息的数学工具。它提供了一种在不精确或不确定的信息下做出推理和决策的方法。证据理论的核心概念包括识别框架、基本信度分配(BPA)、信度函数、似真函数以及组合规则等。
-
识别框架(Frame of Discernment):
识别框架是包含所有可能命题的完备且互斥的集合,记作Ω。在证据理论中,识别框架定义了问题的所有可能结果或状态。 -
基本信度分配(Basic Probability Assignment, BPA):
基本信度分配是一个定义在识别框架所有子集上的函数,记作m(A),表示对命题A的信度分配。m(A)的值介于0和1之间,且满足空集信度分配为0,所有子集信度分配之和为1。 -
信度函数(Belief Function):
信度函数Bel(A)表示对命题A的全部信任程度,它是所有A的子集的基本信度分配之和。 -
似真函数(Plausibility Function):
似真函数Pl(A)表示不否定命题A的程度,它是所有与A有交集的子集的基本信度分配之和。 -
组合规则(Combination Rule):
当存在多个独立证据源时,可以使用组合规则将这些证据源的基本信度分配进行融合,从而得到一个综合的信度分配。Dempster组合规则是最常用的组合规则之一。
二、MATLAB实例
以下是一个使用MATLAB实现证据理论的简单实例,用于融合两个独立证据源对同一命题的信度分配。
% 定义识别框架 | |
Omega |