- 博客(24)
- 收藏
- 关注
原创 litdata--一种高性能数据格式
litdata是针对生物医学大数据优化的高性能数据格式,核心特点包括基于内存映射的二进制存储、快速随机访问和PyTorch Lightning兼容性。其典型文件结构由数据文件、元数据和索引文件组成,支持基因表达矩阵、SNP数据等组学数据的稀疏存储和分块处理。性能测试显示litdata加载1M样本仅需3秒,显著优于CSV和HDF5格式,同时内存占用更低。该格式通过专用API实现数据创建和加载,可无缝集成到Lightning生态系统中,为大规模生物信息学分析提供高效数据支持。
2025-07-07 14:52:11
443
原创 pyproject.toml 有什么作用呢?
摘要:pyproject.toml是Python项目的核心配置文件,用于定义项目元数据和构建系统,作为setup.py的现代替代品。它具有标准化、结构清晰的TOML格式,被主流打包工具支持,包含项目信息、依赖项、构建配置等内容。相比传统方式更安全易维护,符合PEP标准。开发者需掌握其格式、依赖管理、打包发布等关键用法,这是Python工程化和开源项目必备技能。
2025-07-04 21:11:53
667
原创 对于“随机种子”的作用的理解
深度学习系统由确定性和随机性两部分组成。确定性部分包括网络结构、学习率、损失函数、优化器类型等固定设置;随机性部分则涉及权重初始化、数据顺序、Dropout等受随机种子影响的操作。控制随机性对实验可重复性、公平比较和错误调试至关重要。基础学习率是确定性的,但自适应学习率可能受随机梯度影响。通过固定随机种子,可以专注于研究确定性部分的变化对结果的影响,这是深度学习控制变量法的关键。
2025-06-29 18:20:54
255
原创 “GO功能注释富集分析”和“KEGG通路富集分析”
GO和KEGG富集分析是解读基因功能的两大核心方法。GO分析通过Gene Ontology数据库,从生物过程、分子功能和细胞定位三个维度揭示基因参与的生物学功能(如"细胞凋亡"、"激酶活性");KEGG分析则聚焦基因在通路中的相互作用网络(如"NF-κB信号通路")。两者均采用超几何检验判定富集显著性,但GO提供广泛的功能注释,KEGG展现具体的通路机制。在实际研究中,联合使用二者既能定位功能方向,又能解析分子机制,形成"功能点-通路线&
2025-06-25 15:58:49
1181
原创 MSE与MAE的区别是什么?
MSE与MAE的核心差异在于对误差的处理方式:MSE通过平方放大异常误差,适合抑制极端值,但量纲需转换;MAE平等对待所有误差,量纲直观且抗干扰强。MSE优化均值(高斯分布),MAE优化中位数(偏斜数据)。选择取决于需求——MSE用于严惩大错(如金融风控),MAE适用于含噪声数据或需直观解释的场景。进阶方案如Huber Loss可结合二者优点。理解其统计学本质(MSE对应方差,MAE对应中位数)有助于根据数据分布和业务目标合理选择评估指标。
2025-06-25 09:40:26
385
原创 回归任务与分类任务的区别
机器学习中回归与分类任务的核心区别在于输出变量类型:回归预测连续值(如房价),分类预测离散类别(如猫/狗)。回归任务采用线性输出和MSE损失,关注数值误差;分类任务使用概率输出和交叉熵损失,评估类别准确性。典型算法差异明显,如线性回归vs逻辑回归。二者可通过离散化/概率输出相互转化,但会损失信息。关键记忆点:回归回答"多少",分类判断"是否"。
2025-06-23 11:24:19
735
原创 Sparse Features与Parse features一样吗?
摘要:SparseFeatures(稀疏特征)与ParseFeatures(解析特征)本质不同。前者指高维向量中多数为零值(如One-hot编码),用于词袋模型等场景;后者是通过语法解析提取的结构化特征(如依存树),应用于机器翻译等任务。两者易混淆因发音相近,但处理方式迥异:稀疏特征需降维,解析特征需结构化编码。核心区别在于,稀疏特征是存储形式,解析特征是生成方式。(149字)
2025-06-22 11:10:11
256
原创 何为“SNP features”?
SNPfeatures指单核苷酸多态性(SNP)的各类特征属性,包括其在基因组中的位置、参考/替代等位基因、dbSNP编号、等位基因频率、功能注释(如同义/错义突变)、与疾病的关联性等。这些特征对遗传学研究、生物信息学分析和精准医学应用至关重要,是解读SNP在群体分布、功能影响及临床意义的基础。在生物医学领域,SNP特指DNA序列单个碱基的变异,其相关特征信息构成科研和医疗应用的核心数据支撑。
2025-06-22 10:59:56
398
原创 为什么说“深度学习是机器学习的一种范式”
深度学习(DL)是机器学习(ML)的一个重要范式,它通过多层神经网络实现自动化特征学习,突破了传统ML依赖手动特征工程的局限。这一范式以端到端学习为核心,能够处理高维非结构化数据,在图像识别、自然语言处理等领域取得突破性进展。DL对计算资源和大数据规模有较高要求,其多样化的网络架构形成了针对不同任务的子范式,如CNN、RNN、GAN等。作为一种变革性方法论,深度学习重塑了人工智能的研究与应用格局,成为推动当前AI发展的主要力量。
2025-06-21 17:39:40
809
原创 “性状“与“表型“的区别
本文辨析了遗传学中"性状"和"表型"的概念差异。表型指生物体所有可观测特征(如身高、血型),是基因与环境互作的结果;而性状特指具有遗传基础且可度量的表型(如ABO血型)。关键区别在于:表型涵盖范围更广,可包含非遗传特征;性状则必须具有遗传关联性。二者呈包含关系-所有性状都是表型,但并非反之。在科研应用中,表型描述个体整体特征,性状则用于遗传机制分析。
2025-06-21 16:13:18
346
原创 “组学”的数据结构与概念
文章摘要: 组学数据是通过高通量技术(如测序、质谱)对生物分子(基因、蛋白、代谢物等)进行系统性测量的数据集,具有全局性、定量化和状态依赖性特征,涵盖基因组学、转录组学等多类技术。其核心目标是解码生命复杂性,如构建基础图谱、发现生物标志物及解析分子机制。多组学则整合多种组学数据(如基因+蛋白+代谢物),通过关联分析揭示跨层级调控网络,但面临数据异构、算法复杂等挑战。数据结构上,单组学为规则的特征矩阵,多组学为纵向关联的异构矩阵集合,需特殊方法整合分析。组学与多组学研究为精准医学和系统生物学提供了关键工具。
2025-06-21 15:21:47
589
原创 特征中如何理解Ensembl ID?
摘要:EnsemblID是Ensembl数据库中基因组特征的唯一稳定标识符(如ENSG00000139618),其重要性在于跨版本一致性,确保研究数据的准确追踪。虽然EnsemblID适合数据库管理,但转换为基因符号(如BRCA2)更具可读性和生物学意义,方便科研交流。二者互补:前者保障数据一致性,后者增强研究可操作性。在实际应用中,可根据需求灵活选用,分析数据时用EnsemblID,报告成果时用基因符号。(149字)
2025-05-30 21:06:01
961
原创 Transformer中softmax模块的理解与重要性
本文详细解析了Transformer中softmax函数的核心作用与实现细节。在注意力机制中,softmax将点积得分归一化为概率分布,通过缩放因子避免数值过大导致的梯度问题。文章从数学定义出发,阐述了softmax在单头/多头注意力、解码器输出层的具体应用,并通过示例演示计算过程。关键点包括:1)softmax的归一化特性使其能生成有效权重;2)缩放点积解决大维度带来的数值不稳定;3)多头机制通过不同子空间捕获多样化特征。最后解答了常见问题,强调softmax在实现动态权重分配、确保模型可训练性方面的重要
2025-05-30 11:08:21
1517
原创 在Hugging Face数据库中的dataset文件夹为什么会有三个文件呢(dataset.arrow、dataset_info.json、state.json)?
本文详细解析了机器学习数据集的三种核心文件: dataset.arrow:基于Apache Arrow格式的二进制文件,采用列式存储实现高效读写,支持零拷贝和跨语言操作,适用于大规模数据处理; dataset_info.json:存储数据集元信息的JSON文件,包括字段定义、数据划分和引用信息,便于快速了解数据结构; state.json:记录处理状态的JSON文件,支持断点续传和任务监控。三者协作形成高效的数据管理方案——Arrow提供高性能存储,JSON确保元数据和状态的可读性,共同服务于机器学习训练和
2025-05-28 17:00:28
970
原创 为什么要设置“随机种子”
摘要: 随机性在机器学习中广泛存在,如参数初始化、数据打乱等,但放任随机性会导致结果不可复现。**随机种子(Random Seed)**通过固定伪随机数生成的起点,确保相同代码每次运行产生一致的“随机”结果。需为不同库(如Python、NumPy、PyTorch)分别设置种子,并针对GPU训练额外配置。设置种子后,实验结果可稳定复现,便于调试和参数对比;但在最终训练或生产环境中,可不设种子以提升模型泛化能力。核心目的是保证实验的可重复性。 (150字)
2025-05-27 18:42:38
1376
原创 如何从Hugging Face下载文件(包括模型)(强烈推荐)
本文分享了从Huggingface下载模型文件的经验总结。作者推荐使用git clone结合镜像网址的方法:先通过pip安装huggingface_hub包,然后使用hf-mirror.com镜像地址克隆模型(如git clone https://hf-mirror.com/ctheodoris/Geneformer)。文中指出huggingface-cli download命令已被弃用,建议避免使用。该方法操作简单且下载速度快,适合从GitHub克隆代码的用户习惯。
2025-05-26 22:09:18
818
原创 一种有趣的方式介绍“标签预测”任务
通过基因“才艺数据”给细胞发“身份证”。(无预设标签),就像突然冒出个“会编程的舞蹈家”,科学家得赶紧取个新名字!(如PCA)把2万个基因变成“综合才艺分”(比如“唱跳全能指数”)。:通过标签预测,还能研究细胞之间如何“社交”(信号通路)!:细胞的基因表达数据(比如 2万个基因的“才艺分数”)。(而你,已经偷偷知道后台的AI评委是怎么打分的了~)就像用“舞台表现力”代替“具体每个音符的准确度”。:就像往届选手的档案(基因表达 + 已知类别)。(比如“高表达基因A的细胞≈神经元”)。
2025-05-24 15:10:15
515
原创 如何理解“细胞嵌入”?
细胞嵌入在单细胞组学分析中扮演着核心角色,主要用于将高维单细胞数据(如基因表达值)转换为低维表示(如二维或三维),以简化数据复杂度并提取关键生物学信息。其主要用途包括:1. 解决“维度灾难”,通过降维和去冗余技术,将数据压缩到2D/3D空间,保留主要变异信息;2. 可视化细胞群体结构,发现细胞亚群和揭示发育轨迹;3. 支持下游分析任务,如聚类分析、标签预测、轨迹推断和差异表达分析;4. 整合多组学数据,通过跨模态嵌入和多组学对齐揭示调控关系;5. 处理技术噪声与批次效应,通过嵌入方法自动填补缺失值和消除批次
2025-05-21 14:26:09
901
原创 多分类任务评估指标的简单介绍
以下是对多分类任务中核心指标的详细说明,包括其作用、计算方法、适用场景及对比分析。综合评估分类器在精确率(Precision)和召回率(Recall)之间的平衡性能,适用于多类别分类任务。F1 分数:其中:Precision(精确率):正确预测的正类占所有预测为正类的比例。Recall(召回率):正确预测的正类占所有真实正类的比例。多分类扩展:Macro-F1:对每个类别的F1取算术平均。Micro-F1:汇总所有类别的TP、FP、FN后计算全局F1。Weighted-F1:按每个类别的样本数量加权平均F1
2025-05-21 10:52:25
813
原创 回归任务指标的简单介绍与R²是否必要的总结
回归分析中常用的指标包括均方误差(MSE)、平均绝对误差(MAE)、詹森-香农散度(JSD)、皮尔逊相关系数(PCC)、斯皮尔曼秩相关系数和决定系数(R²)。MSE和MAE分别用于量化预测值与真实值的平均平方偏差和平均绝对偏差,适用于不同误差敏感度的场景。JSD用于比较概率分布的相似性,适用于概率输出模型。PCC和斯皮尔曼秩相关系数分别衡量线性相关性和单调关系。R²则量化模型对目标变量方差的解释比例,反映模型的整体拟合优度。R²的独特价值在于其标准化解释力和模型对比能力,但需注意其在线性模型中的适用性和对特
2025-05-20 20:55:47
856
原创 什么是回归任务,聚类任务还有多分类任务?
**轮廓系数 (Silhouette Coefficient)**: 值范围[-1, 1],值越大表明簇内样本间的相似度高于簇间样本的相似度,聚类效果越好。- **定义**:聚类是一种无监督学习方法,其目的是将数据集中的对象分组到不同的簇中,使得同一簇内的对象尽可能相似,而不同簇之间的对象尽可能不同。- **定义**:多分类任务也是一种监督学习方法,但它的目标是将数据分为多个类别中的一个。- **准确率 (Accuracy)**: 预测正确的样本数占总样本数的比例,适用于类别分布均衡的情况。
2025-05-20 16:49:11
868
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人