子集
题目描述
给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的子集(幂集)。
解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。
示例 1:
输入:nums = [1,2,3] 输出:[ [],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3] ]
示例 2:
输入:nums = [0] 输出:[ [],[0] ]
提示:
1 <= nums.length <= 10
-10 <= nums[i] <= 10
nums 中的所有元素 互不相同
解题思路
将子集问题抽象成一棵树,那么子集问题就是找树的所有节点
其实子集也是一种组合问题,因为它的集合是无序的,子集{1,2} 和 子集{2,1}是一样的。
那么既然是无序,取过的元素不会重复取,写回溯算法的时候,for就要从startIndex开始,而不是从0开始!
以nums = [1,2,3]为例,树的结构如下:
从图中红线部分,可以看出遍历这个树的时候,把所有节点都记录下来,就是要求的子集集合。
解题步骤
1 递归函数参数
全局变量数组path为子集收集元素,二维数组result存放子集组合。(也可以放到递归函数参数里)
递归函数参数在上面讲到了,需要startIndex。
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex)
```
**递归终止条件**
剩余集合为空的时候,就是叶子节点。就是startIndex已经大于数组的长度了,就终止了,因为没有元素可取了,代码如下:
```cpp
if (startIndex >= nums.size()) {
return;
}
其实可以不需要加终止条件,因为startIndex >= nums.size(),本层for循环本来也结束了。
2 递归函数逻辑
求取子集问题,不需要任何剪枝!因为子集就是要遍历整棵树。
for (int i = startIndex; i < nums.size(); i++) {
path.push_back(nums[i]); // 子集收集元素
backtracking(nums, i + 1); // 注意从i+1开始,元素不重复取
path.pop_back(); // 回溯
}
C++ 代码实现
class Solution {
private:
vector<vector<int>> result;
vector<int> path;
void backtracking(vector<int>& nums, int startIndex) {
result.push_back(path); // 收集子集,要放在终止添加的上面,否则会漏掉自己
if (startIndex >= nums.size()) { // 终止条件可以不加
return;
}
for (int i = startIndex; i < nums.size(); i++) {
path.push_back(nums[i]);
backtracking(nums, i + 1);
path.pop_back();
}
}
public:
vector<vector<int>> subsets(vector<int>& nums) {
result.clear();
path.clear();
backtracking(nums, 0);
return result;
}
};
复杂度分析
复杂度分析
-
时间复杂度:O(n×2^n)。一共 2n个状态,每种状态需要 O(n) 的时间来构造子集。
-
空间复杂度:O(n)。临时数组 t 的空间代价是 O(n),递归时栈空间的代价为 O(n)