链表相交
题目描述
给你两个单链表的头节点 headA 和 headB ,请你找出并返回两个单链表相交的起始节点。如果两个链表没有交点,返回 null 。
图示两个链表在节点 c1 开始相交:
题目数据 保证 整个链式结构中不存在环。
注意,函数返回结果后,链表必须 保持其原始结构 。
示例 1:
输入:intersectVal = 8, listA = [4,1,8,4,5], listB = [5,0,1,8,4,5], skipA = 2, skipB = 3
输出:Intersected at '8'
解释:相交节点的值为 8 (注意,如果两个链表相交则不能为 0)。 从各自的表头开始算起,链表 A 为 [4,1,8,4,5],链表 B 为 [5,0,1,8,4,5]。 在 A 中,相交节点前有 2 个节点;在 B 中,相交节点前有 3 个节点。
示例 2:
输入:intersectVal = 2, listA = [0,9,1,2,4], listB = [3,2,4], skipA = 3, skipB = 1
输出:Intersected at '2'
解释:相交节点的值为 2 (注意,如果两个链表相交则不能为 0)。 从各自的表头开始算起,链表 A 为 [0,9,1,2,4],链表 B 为 [3,2,4]。 在 A 中,相交节点前有 3 个节点;在 B 中,相交节点前有 1 个节点。
示例 3:
输入:intersectVal = 0, listA = [2,6,4], listB = [1,5], skipA = 3, skipB = 2
输出:null
解释:从各自的表头开始算起,链表 A 为 [2,6,4],链表 B 为 [1,5]。 由于这两个链表不相交,所以 intersectVal 必须为 0,而 skipA 和 skipB 可以是任意值。 这两个链表不相交,因此返回 null 。
提示:
listA 中节点数目为 m
listB 中节点数目为 n
0 <= m, n <= 3 * 104
1 <= Node.val <= 105
0 <= skipA <= m
0 <= skipB <= n
如果 listA 和 listB 没有交点,intersectVal 为 0
如果 listA 和 listB 有交点,intersectVal == listA[skipA + 1] == listB[skipB + 1]
进阶:你能否设计一个时间复杂度 O(n) 、仅用 O(1) 内存的解决方案?
方法一
解题思路
简单来说,就是求两个链表交点节点的指针。 这里要注意,交点不是数值相等,而是指针相等。
为了方便举例,假设节点元素数值相等,则节点指针相等。
看如下两个链表,目前curA指向链表A的头结点,curB指向链表B的头结点:
我们求出两个链表的长度,并求出两个链表长度的差值,然后让curA移动到,和curB 末尾对齐的位置,如图:
此时我们就可以比较curA和curB是否相同,如果不相同,同时向后移动curA和curB,如果遇到curA == curB,则找到交点。
否则循环退出返回空指针。
代码实现
class Solution {
public:
ListNode *getIntersectionNode(ListNode *headA, ListNode *headB) {
ListNode* curA = headA;
ListNode* curB = headB;
int lenA = 0, lenB = 0;
while (curA != NULL) { // 求链表A的长度
lenA++;
curA = curA->next;
}
while (curB != NULL) { // 求链表B的长度
lenB++;
curB = curB->next;
}
curA = headA;
curB = headB;
// 让curA为最长链表的头,lenA为其长度
if (lenB > lenA) {
swap (lenA, lenB);
swap (curA, curB);
}
// 求长度差
int gap = lenA - lenB;
// 让curA和curB在同一起点上(末尾位置对齐)
while (gap--) {
curA = curA->next;
}
// 遍历curA 和 curB,遇到相同则直接返回
while (curA != NULL) {
if (curA == curB) {
return curA;
}
curA = curA->next;
curB = curB->next;
}
return NULL;
}
};
复杂度分析
时间复杂度:O(m+n)
空间复杂度:O(1)
方法二
解题思路
这道题目用双指针法可以使代码更简洁,算法如下:
-
两个指针 pA 和 pB 分别从 headA 和 headB 出发。
-
当一个指针走到链表尾部时,跳转到另一个链表的头部继续走。
-
因为两条链表长度差值被均衡了,所以如果有交点,第二次相遇即为交点。
-
如果最终没有交点,两个指针会同时走到 nullptr,终止循环。
以下图为例:
A: a1 → a2 -> a3 ->a4
↘
c1 → c2 → c3
↗
B: b1 → b2
链表 A 长度为 m = a + c 链表 B 长度为 n = b + c 其中 c 是公共部分长度。
思路核心:
pA 从 headA 开始,走完链表 A 后跳到 B。
pB 从 headB 开始,走完链表 B 后跳到 A。
两人走的总长度相同:a + c + b 和 b + c + a
因此他们一定在第一个交点或 nullptr 相遇。
模拟图示走位过程:
步数 | pA位置 | pB位置 |
---|---|---|
0 | a1 | b1 |
1 | a2 | b2 |
2 | a3 | c1 ← 相交点 |
3 | a4 | c2 |
4 | c1 | c3 |
5 | c2 | nullptr(结束) |
6 | c3 | headA(跳转) |
7 | nullptr(结束) | a1 |
8 | headB(跳转) | a2 |
9 | b1 | a3 |
10 | b2 | a4 |
11 | c1 ← 相遇! | c1 ← 相遇! |
关键理解:
跑道例子:
-
跑道 A 长 100 米(a = 100)
-
跑道 B 长 150 米(b = 150)
-
公共终点段为 50 米(c = 50)
-
A 选手跑:100(私有) + 50(公共)+ 150(对方私有)
-
B 选手跑:150(私有) + 50(公共)+ 100(对方私有)
-
两人跑的总路程是一样的(a + b + c)
他们错开出发,交换跑道后总距离一致,自然会在公共段的起点相遇。
代码实现
class Solution {
public:
ListNode* getIntersectionNode(ListNode* headA, ListNode* headB) {
// 如果有一个链表为空,直接返回空
if (headA == nullptr || headB == nullptr) {
return nullptr;
}
// 初始化两个指针,分别指向两个链表的头节点
ListNode* pointerA = headA;
ListNode* pointerB = headB;
// 两个指针同步前进,直到相遇或者都为 null
while (pointerA != pointerB) {
// 如果 pointerA 走到末尾,就跳到 headB
if (pointerA == nullptr) {
pointerA = headB;
} else {
pointerA = pointerA->next;
}
// 如果 pointerB 走到末尾,就跳到 headA
if (pointerB == nullptr) {
pointerB = headA;
} else {
pointerB = pointerB->next;
}
}
// 返回相遇的节点(可能是交点,也可能是 nullptr)
return pointerA;
}
};
复杂度分析
时间复杂度:O(m+n)
空间复杂度:O(1)