2025重磅技术!固态电池领域迎来“颠覆性”突破!机器学习加速固态电解质设计!

固态电解质作为全固态电池的核心组成部分,近年来成为研究热点。在如何发掘具有高离子电导率的固态电解质方面,科学家发现从头算分子动力学有助于加快发现快离子导体的进程。然而,这些方法计算成本高,难以大规模应用,因而需要新的技术手段来应对这一挑战。近年来,机器学习(ML)在加速新材料发现、优化制造工艺、预测电池循环寿命和固态电解质 (SSE) 的性质方面展现出了巨大潜力。通过在 ML 框架中集成实验或/和仿真数据,可以加速高级 SSE 的发现和开发,最终促进它们在高端储能系统中的应用。密度泛函理论 (DFT) 的引入改善了对材料特性的研究。这为固体电解质带来了重大突破,固体电解质已成为下一代储能系统的有前途的候选者。

专题目标:通过学习掌握机器学习固态电解质设计

1. 掌握固态离子电解质的基本概念、关键性能及其表征。

2.了解利用第一性原理(DFT)和分子动力学(MD)计算固体电解质性质的基本方法和挑战。

3.掌握机器学习的基本概念、常用算法及其在材料科学中的应用流程。

4.学习如何构建适用于固态电解质的特征描符(Features/Descriptors)。5. 熟练运用Python及其相关库(Numpy, Pandas, Scikit-learn, Pytorch/TensorFlow, Pymatgen)处理材料数据和构建机器学习模型。

6.掌握利用机器学习预测固态电解质关键性能(如离子电导率、稳定性等)的方法。

7.学习使用机器学习加速新型固态电解质材料的发现和设计。

8.掌握使用机器学习与传统计算模拟(DFT/MD)结合的策略。

机器学习固态电解质设计专题主讲:来自全国重点大学、国家“985工程”、“211工程"重点高校,长期从事固态电解质材料的第一性原理、分子动力学模拟研究,特别是在利用计算模拟方法和机器学习相结合来加速材料筛选,性能预测等方面有深入研究。他的授课方式浅显易懂,特别擅长从简单角度出发,逐渐深入讲解复杂的理论知识和计算方法!目前共发表论文(Nature Catalysis, Nature Communications, Energy & Environmental Science, Advanced Energy Materials等)共四十余篇。曾任Joule, Journal of Materials Chemstry A等期刊审稿人。 

大纲安排:

第一天:固态离子电解质基础与计算模拟入门

上午:固态离子电解质:背景、挑战与机遇

1.引言: 新能源需求与固态电池的重要性。

2.固态离子电解质基础:

2.1定义、分类(氧化物、硫化物、聚合物、复合电解质等)。

2.2关键性能参数详解:离子电导率、电子电导率、电化学稳定性窗口、热稳定性、机械性能、界面相容性。

2.3离子在固态电解质中的传输机制(空位、间隙、协同跳跃等)。

3.计算模拟为何重要? 

3.1微观尺度理解材料物理化学行为。

3.2辅助实验设计与结果解释。

3.3预测新材料及其性能。

4.常用材料数据库介绍: Materials Project, OQMD等,以及如何检索固体电解质相关数据。

5.面临的挑战: 传统试错法效率低,计算模拟成本高,性能与稳定性难以兼顾。

下午:固态电解质的计算模拟方法与数据基础

1.第一性原理计算(DFT)基础: 

1.1基本概念与近似(LDA, GGA, DFT+U)。

1.2计算电解质的热力学稳定性(相图构建、分解能)。

1.3计算电化学稳定性窗口。

1.4计算离子迁移能垒(NEB方法)。

2.分子动力学(MD)基础: 

2.1从头算分子动力学(AIMD) vs. 经典分子动力学(CMD)。

2.2利用AIMD计算离子扩散系数和离子电导率。

2.3力场的概念(针对特定体系,如聚合物/复合电解质)。

3.计算模拟的局限性: 计算成本、时间尺度、体系尺寸限制 -> 引出机器学习的需求。

4.编程环境准备与基础库入门: 

4.1Python环境搭建(Anaconda)。

4.2Numpy:数值计算基础。

4.3Pandas:数据处理与分析。

4.4Matplotlib/Seaborn:数据可视化。

4.5Pymatgen:材料学数据处理与结构操作入门。

————————————————————————————————

第二天:机器学习基础与特征工程

上午:机器学习核心概念与常用算法

1.机器学习概述: 监督学习、非监督学习、强化学习。

2.机器学习工作流程: 问题定义 -> 数据收集 -> 数据预处理 -> 特征工程 -> 模型选择 -> 模型训练 -> 模型评估 -> 模型部署/应用。

3.监督学习(回归与分类): 

3.1线性回归、逻辑回归。

3.2K-近邻(KNN)。

3.3支持向量机(SVM)。

3.4决策树。

4.非监督学习: 

4.1K-均值聚类(K-Means)。

4.2层次聚类。

4.3主成分分析(PCA)用于降维与可视化。

5.Scikit-learn库核心功能介绍与使用。

下午:固态电解质的特征工程与数据处理

1.特征工程的重要性: 如何将材料信息转化为机器学习模型可理解的输入。

2.常用特征类别: 

2.1组分特征: 原子属性(半径、电负性、价电子数等)的统计量(平均、方差、范围等)。

2.2结构特征: 晶格参数、空间群、原子坐标、配位数、键长键角分布、Voronoi多面体分析、径向分布函数(RDF)信息等。

2.3物理/化学特征(计算或实验): 带隙、形成能、体积模量、已知电导率/稳定性数据等。

3.特征生成工具: Pymatgen、Matminer、手动构建。

4.数据预处理: 缺失值处理、数据标准化/归一化、异常值检测。

5.实战一:固态电解质数据集的构建与特征提取 

5.1任务:从数据库(如Materials Project)下载固态电解质数据,使用Pymatgen/Matminer提取组分和结构特征,形成适用于机器学习的数据集(CSV/Pandas DataFrame)。

————————————————————————————————

第三天:模型评估、优化与集成学习

上午:模型评估与优化

1.模型评估指标: 

1.1回归:均方误差(MSE)、平均绝对误差(MAE)、决定系数(R²)。

1.2分类:准确率(Accuracy)、精确率(Precision)、召回率(Recall)、F1分数、ROC曲线与AUC。

2.交叉验证(Cross-Validation): K折交叉验证、留一法等,用于评估模型泛化能力。

3.模型选择与避免过拟合/欠拟合: 学习曲线分析。

4.超参数调优: 网格搜索(Grid Search)、随机搜索(Random Search)。

下午:集成学习与实践

1.集成学习思想: Bagging (如随机森林 Random Forest), Boosting (如AdaBoost, Gradient Boosting, XGBoost, LightGBM)。

2.随机森林(Random Forest)原理与应用。

3.梯度提升树(Gradient Boosting)原理与应用。

4.实战二:基于集成学习的固态电解质离子电导率预测 

4.1任务:使用第二天构建的数据集,训练并比较多种监督学习模型(如SVM, RF, GBT)预测离子电导率。运用交叉验证评估模型性能,并使用网格搜索进行超参数调优。分析特征重要性。

————————————————————————————————

第四天:深度学习及其在固态电解质中的应用

上午:深度学习基础与神经网络

1.神经网络基础: 感知器、多层感知器(MLP)、激活函数(ReLU, Sigmoid, Tanh)、损失函数、梯度下降与反向传播。

2.深度学习框架介绍: Pytorch / TensorFlow 基础。

3.构建全连接神经网络(DNN/MLP)。

4.深度学习中的正则化: L1, L2, Dropout。

5.优化算法: SGD, Adam, RMSprop。

下午:图神经网络(GNN)及其在材料科学中的应用

1.为什么需要GNN? 传统特征工程的局限性,如何直接从原子结构学习。

2.图的基本概念: 节点(原子)、边(键)、图(晶体结构/分子)。

3.GNN基本思想: 消息传递机制。

4.常用GNN架构介绍: GCN, GAT, SchNet, MEGNet/ALIGNN等。

5.实战三:使用DNN预测固态电解质性质 

5.1任务:利用Pytorch构建DNN模型,使用第三天处理好的特征数据进行离子电导率或稳定性预测,与传统ML模型对比。

6.实战四:基于图神经网络的固态电解质性质预测 

6.1任务:利用现有的材料学GNN库(如Pytorch Geometric, DGL配合相应模型)构建或调用预定义GNN模型,直接输入晶体结构信息预测离子电导率,并与基于特征工程的模型进行比较。

————————————————————————————————

第五天:机器学习加速材料发现与高级应用

上午:机器学习驱动的材料设计与发现

1.高通量虚拟筛选: 结合材料数据库与训练好的ML模型,快速筛选大量候选材料,预测其关键性能(电导率、稳定性),缩小实验或高精度计算的范围。

2.主动学习(Active Learning): 通过迭代方式,让模型选择最有信息量的“下一个”计算/实验点,用最少的数据达到最好的模型效果或最快发现目标材料。

3.贝叶斯优化(Bayesian Optimization): 用于优化材料组分或结构参数以达到目标性能。

4.机器学习与DFT/MD的结合: 

4.1ML力场/势函数:加速MD模拟。

4.2使用ML预测DFT计算的中间量或最终结果。

下午:综合应用与展望

1.实战五:模拟高通量筛选流程 

1.1任务:利用已训练好的ML模型对一个“虚拟”的包含大量未探索成分/结构的候选材料数据库进行快速性能预测,识别出数个最有潜力的候选者。

2.案例研究: 展示已发表的利用ML成功发现或优化固态电解质的实例。

3.总结与展望: 机器学习在固态电解质领域的挑战与未来发展方向(如界面问题、多性能协同优化、可解释性、数据共享等)。

部分案例图片:

图片

图片

 

学术地震!电池领域迎来“颠覆性”突破!打破电池领域多年卡脖子技术!

上方链接查看完整代码和信息!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值