在计算机科学中,原码、反码和补码是表示有符号整数(即可以表示正数、负数和零)的三种不同方式。这些表示方法主要用于二进制系统中,特别是在计算机内部处理整数时。下面将详细解释这三种编码方式,并通过例子来说明它们。
原码 (Sign-Magnitude Representation)
原码是一种直接表示数值的方法,其中最高位用来表示符号(0为正,1为负),其余位表示数值本身。
- 正数的原码:最高位为0,其余位表示该数的绝对值。
- 负数的原码:最高位为1,其余位表示该数的绝对值。
例如,对于8位二进制数:
反码 (One’s Complement)
反码是一种用于简化二进制加减运算的表示方法。对于正数,反码与原码相同;对于负数,反码是原码除符号位外,其余各位取反(0变1,1变0)。
- 正数的反码:与原码相同。
- 负数的反码:符号位不变,其余位取反。
例如,对于8位二进制数:
- 数字 +5 的反码是
00000101
(与原码相同)。 - 数字 -5 的反码是
11111010
(原码除符号位外,其余位取反)。
补码 (Two’s Complement)
补码是目前计算机系统中最常用来表示有符号整数的方法。补码通过取反码再加1得到,这样可以使得加法和减法运算统一处理,简化硬件设计。
- 正数的补码:与原码相同。
- 负数的补码:反码加1。
例如,对于8位二进制数:
- 数字 +5 的补码是
00000101
(与原码相同)。 - 数字 -5 的补码是
11111011
(反码11111010
加1)。
举例说明
以8位二进制数为例,解释原码、反码、补码:
数值 | 原码 | 反码 | 补码 |
---|---|---|---|
+5 | 00000101 | 00000101 | 00000101 |
-5 | 10000101 | 11111010 | 11111011 |
从补码中我们可以看到,最小的负数(-128)在8位二进制中用补码表示为 10000000
,其原码和反码都不直接表示这个值。补码系统有一个特性,即最大的正数和最小的负数在数值上是对称的。例如,在8位系统中,最大的正数是 01111111
(+127的补码),最小的负数是 10000000
(-128的补码)。
补码的这种表示方法使得计算机在进行加减运算时,可以像处理无符号整数一样处理有符号整数,只需要在最后处理可能发生的溢出即可。
补充对称性:
- 最大的正数 (+127) 的补码表示为
01111111
- 最小的负数 (-128) 的补码表示为
10000000
- 如果我们观察这两个补码的位模式,可以看到它们在补码的“中心”是对称的。在8位补码中,中心点可以看作是从
01111111
到10000000
的过渡,即从全1到全0的变化。
举例说明
让我们通过以下步骤来观察这种对称性:
-
计算 +127 的补码:
- 原码:
01111111
(最高位0表示正数,其余位表示127) - 反码:
01111111
(对于正数,反码与原码相同) - 补码:
01111111
(对于正数,补码与原码相同)
- 原码:
-
计算 -128 的补码:
- 原码:
10000000
(最高位1表示负数,其余位表示128) - 反码:
11111111
(除符号位外,其余位取反) - 补码:
10000000
(反码加1,由于加1导致最高位的1溢出,所以结果仍然是10000000
)
- 原码:
在补码系统中,当我们从 +127 增加到 +128 时,会发生溢出,数值会“环绕”回到 -128。这是因为补码系统中,每个数值的表示都是唯一的,不存在像原码和反码那样的冗余表示(例如,原码和反码中的 11111111
表示 -127,但也可以表示 -0)。
用途介绍:
1. 表示有符号整数
在计算机中,整数分为有符号(正数和负数)和无符号(只有正数)两种。原码、反码和补码提供了一种方法来表示有符号整数。
2. 简化硬件设计
- 原码:虽然直观,但原码的加减运算规则复杂,不利于硬件实现。
- 反码:反码简化了减法运算,因为减去一个数等同于加上它的反码。但反码有两个零的表示(例如,
00000000
和11111111
),这在硬件上处理起来比较复杂。 - 补码:补码进一步简化了加减运算,只需要处理加法即可,并且只有一个零的表示(
00000000
),这大大简化了计算机的算术逻辑单元(ALU)的设计。
3. 加减运算的统一
- 使用补码,加法和减法运算可以统一处理。这意味着计算机的硬件只需要实现加法逻辑,减法可以通过加一个数的补码来实现。
实际应用
- 在实际的计算机系统中,几乎所有的现代计算机架构都使用补码来表示有符号整数,因为它提供了最有效、最直接的方式来执行算术运算。
- 在编程语言中,当我们声明有符号整数变量时,这些变量在底层硬件上就是以补码形式存储和操作的。
总结来说,原码、反码和补码是为了在计算机系统中有效地表示和处理有符号整数,而补码因其独特的优势成为了最广泛使用的表示方法。
总结:
1.二进制的最高位是符号位:0表示正数,1表示负数(口诀: 0->0 1-> -)
2.正数的原码,反码,补码都一样(三码合一)
3.负数的反码=它的原码符号位不变,其它位取反(0->1,1->0)
4.负数的补码=它的反码+1,负数的反码=负数的补码﹣1
5. 0的反码,补码都是0
6.在计算机运算的时候,都是以补码的方式来运算的.
解释第5点:
正0的原码、反码和补码
- 原码:
00000000
(8位表示,最高位0表示正数,其余位表示0) - 反码:
00000000
(对于正数,反码与原码相同) - 补码:
00000000
(对于正数,补码与原码相同)
负0的原码、反码和补码
在补码系统中,通常不区分正0和负0,因为它们的补码表示是相同的。但是,如果我们按照定义来计算负0的反码和补码,以下是步骤:
- 原码:
10000000
(8位表示,最高位1表示负数,其余位表示0) - 反码:
11111111
(对于负数,反码是将原码中除符号位外的所有位取反) - 补码:
00000000
(反码加1,11111111
+ 1 =100000000
,由于我们只考虑8位,所以最高位的1溢出,剩下的是00000000
)
因此,无论是正0还是负0,其反码和补码都是00000000
。
举例说明
假设我们有一个8位的二进制系统,我们想要表示数字0:
-
对于正0:
- 原码:
00000000
- 反码:
00000000
(正数的反码等于原码) - 补码:
00000000
(正数的补码等于原码)
- 原码:
-
对于负0(虽然通常不区分,但为了完整性):
- 原码:
10000000
- 反码:
11111111
(将原码中除符号位外的所有位取反) - 补码:
00000000
(反码加1,得到100000000
,去掉溢出的最高位1)
- 原码:
在计算机系统中,通常不区分正0和负0,因此0的反码和补码都被简单地表示为00000000
。这种表示简化了算术运算,因为在补码系统中,加法和减法可以统一处理,不需要考虑符号。
好啦,今天的干货就到这啦~ 有什么建议或疑问的小伙伴欢迎到评论区留言!