- 博客(13)
- 收藏
- 关注
原创 图像预处理 三
本文介绍了图像处理中的梯度计算、边缘检测和轮廓分析技术。首先阐述图像梯度的概念及其在边缘检测中的应用,详细讲解了Sobel、Laplacian等梯度算子的原理与实现方法。其次,系统说明Canny边缘检测的完整流程,包括高斯滤波、梯度计算、非极大值抑制和双阈值筛选等关键步骤。最后,探讨了图像轮廓的查找与绘制方法,以及凸包检测算法(穷举法和QuickHull法)的实现原理与应用。通过OpenCV函数调用示例,展示了各技术在数字图像处理中的实际应用效果,为计算机视觉任务中的特征提取提供了技术参考。
2025-07-25 19:46:01
1036
原创 图像预处理 二
摘要:本文系统介绍了图像处理中的插值方法和滤波技术。在插值方法部分,详细分析了最近邻插值、双线性插值、双三次插值等算法的原理及应用场景,比较了各方法的计算效率和效果。图像滤波部分阐述了均值滤波、高斯滤波、中值滤波和双边滤波的工作原理,重点讲解了不同噪声类型下滤波器的选择策略。实验代码展示了OpenCV中各种插值和滤波方法的实现,包括图像旋转、缩放、水印添加等实用操作。文章通过理论分析和实例演示相结合的方式,为图像处理任务中的算法选择提供了实用参考。
2025-07-24 19:39:50
1123
原创 图像预处理 一
本文介绍了图像预处理中的三种灰度化方法(最大值法、平均值法、加权均值法)和图像仿射变换技术(旋转、平移、缩放)。详细阐述了五种图像二值化处理方式(阈值法、反阈值法、截断阈值法等)及其应用场景。同时讲解了RGB和HSV两种颜色空间的特点与转换方法,包括颜色加法运算和加权加法。通过Python代码示例展示了各种图像处理技术的实现过程,为计算机视觉应用提供了基础预处理方法。这些技术能有效提高后续图像分析和处理的准确性。
2025-07-23 20:18:08
919
原创 图像—基础
本文介绍了OpenCV(开源计算机视觉库)及其Python接口OpenCV-Python的基本使用方法。内容包括:1)OpenCV的优势(开源免费、多语言支持、跨平台等)和Python接口特性;2)数字图像表示方式(像素、通道、存储格式)和图像数据结构(NumPy数组);3)基本图像操作:窗体创建、图像读取/显示/保存、黑白图像创建、图像裁剪和大小调整;4)图像绘制功能(直线、圆形、矩形等几何图形)。文中通过代码示例演示了各项功能的实现方法,适合计算机视觉初学者快速掌握OpenCV基础操作。
2025-07-22 22:39:24
721
原创 Python:模块化编程概念(模块、包、导入)及常见系统模块总结和第三方模块管理
本文介绍了Python模块化编程的核心概念与应用方法。主要内容包括:1)模块化编程基础(模块、包、导入方式);2)常用系统模块功能速查;3)第三方模块管理(pip安装、虚拟环境、镜像加速等)。重点讲解了如何通过模块化组织代码结构,列举了os、sys等系统模块的典型用法,并详细说明了第三方模块的安装与管理技巧,包括创建虚拟环境、依赖管理等实用技术。文章还提供了模块命名规范、导入顺序等最佳实践建议。
2025-07-18 19:10:04
694
原创 Python:迭代器和生成器的区别及其各自实现方式和使用场景
Python中迭代器和生成器都是处理序列数据的工具,但存在关键差异:迭代器是通过类实现的,需手动定义__iter__()和__next__()方法进行状态管理,适合自定义遍历逻辑;生成器则是用yield语句的函数,自动实现迭代器协议,语法简洁且内存高效,特别适合处理大数据流或无限序列。迭代器提供更灵活的控制,而生成器更简洁高效,开发中应根据需求选择。
2025-07-17 19:38:41
774
原创 Python:类和对象的基本概念及属性和方法的常见分类和使用场景
摘要:本文系统介绍了面向对象编程中的核心概念——类与对象,重点讲解了属性(实例属性和类属性)与方法(实例方法、类方法和静态方法)的分类及其应用场景。通过银行账户、员工管理等具体示例,展示了不同类型属性和方法的定义与使用方式,并对比了它们的特性与适用场景。文章还提供了Python魔术方法的速查表,涵盖构造、对象表示、运算符重载等常见操作的特殊方法,帮助开发者更好地理解和使用面向对象编程范式。
2025-07-16 19:45:44
951
原创 Python:递归函数及装饰器函数
本文介绍了Python中的递归函数和装饰器函数:1.递归函数通过自我调用解决可分解的子问题,包含基线条件和递归条件两个要素,适用于阶乘、斐波那契数列等计算,但存在栈溢出风险。2.装饰器函数作为高阶函数,使用@语法糖来增强其他函数功能,遵循开放封闭原则,可实现日志记录、计时等功能。类装饰器进一步扩展了装饰器的能力。两者本质不同:递归是算法实现方式,装饰器是元编程技术。递归适合分治问题但效率低,装饰器能非侵入式修改函数行为但调试复杂。实际应用中,应根据问题特性选择合适方案,两者结合可创建更强大的编程模式。
2025-07-15 19:05:08
650
原创 函数的位置传参、关键词传参及其可变性和解包操作
Python函数参数传递机制详解本文系统介绍了Python中的四种参数传递方式:(1)位置传参(按顺序传递,简单但易错);(2)关键词传参(按名称传递,灵活可读);(3)可变参数(*args接收元组,kwargs接收字典);(4)解包操作(解包序列,**解包字典)。重点阐述了混合使用时必须遵循参数顺序规则:标准位置参数→args→关键词参数→kwargs。通过具体代码示例展示了每种方式的应用场景,强调合理组合这些技术可以构建更灵活的函数接口。掌握这些核心机制对编写健壮、可维护的Python代码至关重要。
2025-07-14 19:14:59
878
原创 Python 推导式及 常见语句和内置函数
Python基础语法总结:涵盖推导式、表达式类型和常用语句。1.推导式提供简洁的序列创建方式(列表/字典/集合)。表达式部分详解了算术、比较、逻辑、赋值、成员、身份和三元7种表达式类型及其应用场景。2.常用语句包括条件分支、循环控制、异常处理和with上下文管理。3.内置函数部分列举了len、range、enumerate等15个高频函数的使用示例。4.实践建议:优先使用推导式替代循环,大数据集用生成器表达式,合理使用map/filter与lambda组合,善用enumerate提高迭代效率。
2025-07-11 20:01:59
564
原创 复合类型之序列类型、映射类型和集合类型
Python中的复合数据类型主要分为序列、映射和集合三大类。序列类型(如列表、元组、字符串)是有序且可索引的;映射类型(主要是字典)存储键值对,通过键快速访问值;集合类型则包含唯一、无序的元素,主要用于成员测试和去重。每种类型都有可变和不可变版本,适用于不同场景:列表适合动态数据,元组用于固定数据,字典处理关联数据,集合则用于快速查找和去重操作。理解这些类型的特点有助于在编程中选择合适的数据结构。
2025-07-10 19:41:00
1001
原创 Python的基础变量类型之字符串和数字类型
Python基础变量类型主要包括数字(整数int、浮点数float)和字符串(str)。整数支持不同进制表示,浮点数可能存在精度误差。字符串用于文本处理,支持索引切片、大小写转换等操作。数字与字符串间需通过str()、int()、float()相互转换。关键区别在于数字用于数值计算(不可变),字符串处理文本(不可变字符序列)。注意混合运算时需显式类型转换,字符串比较区分大小写。
2025-07-09 16:27:12
515
原创 【conda环境配置及IDE(vsCode、PyCharm、Jupyter)开发环境配置】
摘要:Anaconda安装指南及开发环境配置1.Anaconda安装步骤:官网下载对应版本安装时选择"Just Me"模式建议不添加环境变量注册为默认Python版本2.环境配置:创建conda环境并激活安装常用数据科学包3.IDE配置:VSCode:安装Python扩展并选择conda环境PyCharm:配置conda解释器Jupyter:通过镜像源快速安装启动
2025-07-08 19:59:21
545
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人