python 线性时间复杂度O(n) 求组合数

组合数\binom{n}{m} (C{n}^{m}) 需要用到公式

 C{n}^{m} = \frac{n!}{m!*(n-m)!}n! * \frac{1}{m!} * \frac{1}{(n-m)!}

所以我们可以用阶乘来计算组合数,对于n! * \frac{1}{m!} * \frac{1}{(n-m)!} 中的 \frac{1}{m!}  和 \frac{1}{(n-m)!} 还需要用到逆元的知识,具体代码如下,应用时只需要修改MOD 和 MX即可

MOD = 1_000_000_007
MX = 100_001  # 根据题目数据范围修改

fac = [0] * MX  # fac[i] = i!
fac[0] = 1      # 0! = 1
# 预处理阶乘
for i in range(1, MX):
    fac[i] = fac[i - 1] * i % MOD
# 预处理阶乘逆元
inv_f = [0] * MX  # inv_f[i] = i!^-1
inv_f[-1] = pow(fac[-1], -1, MOD)
for i in range(MX - 1, 0, -1):
    inv_f[i - 1] = inv_f[i] * i % MOD
# 计算组合数
def comb(n: int, m: int) -> int:
    return fac[n] * inv_f[m] * inv_f[n - m] % MOD if 0 <= m <= n else 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值