如何使用Albumentations 对目标检测任务做增强(1)

文章介绍了如何使用Python库albumentations处理COCO数据集中的图像,包括定义可视化函数显示边界框和类标签,获取图像和标注,以及使用RandomSizedBBoxSafeCrop进行随机增强,保持边界框完整性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import random

import cv2

from matplotlib import pyplot as plt

import albumentations as A

2、定义可视化函数显示图像上的边界框和类标签

======================

可视化函数参考https://github.com/facebookresearch/Detectron/blob/master/detectron/utils/vis.py

BOX_COLOR = (255, 0, 0) # Red

TEXT_COLOR = (255, 255, 255) # White

def visualize_bbox(img, bbox, class_name, color=BOX_COLOR, thickness=2):

“”“Visualizes a single bounding box on the image”“”

x_min, y_min, w, h = bbox

x_min, x_max, y_min, y_max = int(x_min), int(x_min + w), int(y_min), int(y_min + h)

cv2.rectangle(img, (x_min, y_min), (x_max, y_max), color=color, thickness=thickness)

((text_width, text_height), _) = cv2.getTextSize(class_name, cv2.FONT_HERSHEY_SIMPLEX, 0.35, 1)

cv2.rectangle(img, (x_min, y_min - int(1.3 * text_height)), (x_min + text_width, y_min), BOX_COLOR, -1)

cv2.putText(

img,

text=class_name,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值