Doris 数据集成 Catalog

Doris引入了Multi-Catalog功能,增强了数据湖分析和联邦数据查询能力。新增Catalog层,与Apache Hive、Iceberg、Hudi、Elasticsearch和JDBC等外部数据目录对接。用户可通过CREATE CATALOG创建External Catalog,并通过SWITCH命令切换。Doris支持对External Catalog的只读访问,提供手动、定时和自动元数据刷新机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Doris 数据集成 Catalog

多源数据目录(Multi-Catalog)功能,旨在能够更方便对接外部数据目录,以增强Doris的数据湖分析和联邦数据查询能力。

在之前的 Doris 版本中,用户数据只有两个层级:Database 和 Table。当我们需要连接一个外部数据目录时,我们只能在Database 或 Table 层级进行对接。比如通过 create external table 的方式创建一个外部数据目录中的表的映射,或通过 create external database 的方式映射一个外部数据目录中的 Database。

如果外部数据目录中的 Database 或 Table 非常多,则需要用户手动进行一一映射,使用体验不佳。

新的 Multi-Catalog 功能在原有的元数据层级上,新增一层Catalog,构成 Catalog -> Database -> Table 的三层元数据层级。其中,Catalog 可以直接对应到外部数据目录。目前支持的外部数据目录包括:

  1. Apache Hive
  2. Apache Iceberg
  3. Apache Hudi
  4. Elasticsearch
  5. JDBC: 对接数据库访问的标准接口(JDBC)来访问各式数据库的数据。
  6. Apache Paimon(Incubating)

该功能将作为之前外表连接方式(External Table)的补充和增强,帮助用户进行快速的多数据目录联邦查

<think>好的,我需要介绍一下Doris中的Catalog。首先,得确认用户所说的Doris是指Apache Doris,那个实时分析型数据库Catalog数据库系统中通常指元数据的集合,但在Doris的具体实现里,可能需要进一步查证。 我记得Doris在较新的版本中引入了多Catalog功能,可能是为了支持联邦查询或外部数据源。比如,用户可能可以通过Catalog访问Hive、Iceberg等外部表。需要确认这个功能的版本支持情况,比如从1.2版本开始支持。 接下来,Catalog的作用是什么?应该包括统一管理不同数据源,简化用户操作,避免重复创建外部表。每个Catalog对应一个数据源实例,比如一个Hive集群或MySQL服务器。 然后,要说明如何创建Catalog。例如使用CREATE CATALOG语句,指定类型和属性。例如: CREATE CATALOG hive_catalog PROPERTIES ( 'type'='hive', 'hive.metastore.uris' = 'thrift://localhost:9083' ); 需要提及支持的Catalog类型,如Hive、Elasticsearch、JDBC(MySQL等)、Iceberg、Hudi等。用户可以通过切换Catalog来访问不同数据源,类似USE catalog_name;。 还要注意权限管理,不同用户可能有不同Catalog的访问权限。以及查询外部Catalog时的性能考虑,可能不如内部表高效,因为涉及网络传输和数据转换。 最后,应用场景,比如数据湖分析、跨库查询,或者数据仓库与Doris的结合使用。可能还需要提到注意事项,比如需要配置正确的连接信息,确保网络可达,以及版本兼容性。 要确保结构清晰,分点说明,同时遵循LaTeX格式要求,行内公式用$...$,独立公式用$$...$$。比如,在提到性能时,可以写查询延迟可能较高,例如$T_{external} > T_{internal}$。不过,如果不需要数学表达式,这部分可以省略。 检查是否有语法错误,比如Doris的正确名称和版本,确保步骤准确。可能需要参考Doris的官方文档,确认最新信息,比如是否支持更多Catalog类型,或者创建语法是否有变化。 总结,CatalogDoris中主要用于统一管理外部数据源,简化跨源查询。用户创建Catalog后,可以直接查询外部数据,无需每次建表。需要分点介绍概念、作用、创建方式、类型、使用示例和注意事项。</think>在Apache Doris中,**Catalog** 是一种用于统一管理和访问外部数据源的元数据集合。它简化了跨数据源的联邦查询操作,允许用户直接通过Doris访问外部存储系统的数据而无需手动创建外部表。以下从多维度详细介绍: --- ### 一、Catalog的核心概念 1. **核心作用** Catalog将不同数据源的元信息抽象为统一的逻辑视图,用户通过Catalog可直接查询外部数据源(如Hive、Iceberg、MySQL等),无需预先在Doris中创建外部表。 2. **多Catalog支持** 支持多种外部数据源类型,例如: - `hive_catalog`: 访问Hive数据仓库 - `es_catalog`: 查询Elasticsearch索引 - `jdbc_catalog`: 连接MySQL/Oracle等关系数据库 - `iceberg_catalog`: 读取Iceberg表 --- ### 二、Catalog的使用场景 1. **联邦查询(Federated Query)** 直接通过Doris执行跨数据源的联合查询,例如: ```sql SELECT * FROM hive_catalog.db.table1 JOIN jdbc_catalog.db.table2 ON table1.id = table2.id; ``` 2. **数据湖分析** 对接数据湖格式(如Iceberg、Hudi),利用Doris的高效查询能力加速分析。 3. **简化ETL流程** 避免手动同步外部数据到Doris,直接通过Catalog访问原始数据。 --- ### 三、创建与管理Catalog 1. **创建语法** 使用`CREATE CATALOG`命令,指定类型和连接属性: ```sql CREATE CATALOG hive_catalog PROPERTIES ( 'type' = 'hive', 'hive.metastore.uris' = 'thrift://localhost:9083' ); ``` 2. **切换Catalog** 通过`SWITCH`或`USE`命令切换上下文: ```sql SWITCH hive_catalog; -- 或 USE CATALOG hive_catalog; ``` 3. **查看与删除** ```sql SHOW CATALOGS; -- 列出所有Catalog SHOW CREATE CATALOG hive_catalog; -- 查看创建语句 DROP CATALOG hive_catalog; -- 删除Catalog ``` --- ### 四、支持的Catalog类型 | 类型 | 数据源 | 关键配置参数 | |--------------|---------------------------|---------------------------------------------| | `hive` | Hive数据仓库 | `hive.metastore.uris` | | `es` | Elasticsearch | `hosts`, `username`, `password` | | `jdbc` | MySQL/PostgreSQL/Oracle | `jdbc_url`, `jdbc_user`, `jdbc_password` | | `iceberg` | Iceberg表 | `iceberg.catalog.type`(HMS或自定义) | | `hudi` | Hudi表 | 需通过Hive Catalog间接访问 | --- ### 五、性能与注意事项 1. **查询性能** 外部数据源的查询速度受网络延迟、数据格式等因素影响,通常 $T_{\text{external}} > T_{\text{internal}}$(外部表查询时间 > Doris内部表)。 2. **语法兼容性** 部分外部数据源的函数或语法可能与Doris不兼容,需在查询时适配。 3. **权限控制** Catalog的访问权限通过Doris的RBAC模型管理,需授予用户`USAGE`权限: ```sql GRANT USAGE_ON_CATALOG hive_catalog TO user; ``` --- ### 六、示例:查询Hive表 ```sql -- 创建Hive Catalog CREATE CATALOG hive_catalog PROPERTIES ( 'type' = 'hive', 'hive.metastore.uris' = 'thrift://localhost:9083' ); -- 切换Catalog并查询 USE CATALOG hive_catalog; SELECT * FROM sales_db.sales_table WHERE year = 2023; ``` --- 通过Catalog功能,Doris实现了与多种数据源的深度集成,显著提升了数据分析和联邦查询的效率。建议参考[官方文档](https://doris.apache.org/)获取最新支持的数据源类型和配置细节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值