大模型系列——RAG架构大揭秘:三种方式让AI回答更精准,更懂你!

大模型系列——RAG架构大揭秘:三种方式让AI回答更精准,更懂你!

image-20250331075415973

在人工智能飞速发展的今天,我们已经习惯了与各种智能系统打交道,从聊天机器人到智能搜索引擎,它们似乎无处不在。但你有没有想过,这些系统是如何真正理解我们的需求,并给出准确回答的呢?今天,就让我们一起深入探索一下前沿的RAG(Retrieval-Augmented Generation,检索增强生成)技术,看看它如何让AI变得更“聪明”。

一、什么是RAG技术?

想象一下,你正在和一个朋友聊天,他突然问你一个很专业的问题,比如“量子计算机的工作原理是什么?”你可能会立刻打开搜索引擎,快速浏览一些相关的文章,然后把关键信息整合起来,给他一个简洁明了的回答。RAG技术的工作原理其实和这个过程有点类似。

传统的语言模型就像是一个“闭卷考试”的学生,它只能依靠自己在训练过程中学到的知识来回答问题。但如果问题超出了它的知识范围,它可能就无能为力了。而RAG技术就像是一个“开卷考试”的学生,它不仅可以利用自己学到的知识,还能随时查阅一个巨大的“知识库”,从中找到最相关的资料,然后结合这些资料生成一个更准确、更丰富的回答。

这个“知识库”可以是各种各样的,比如网页、书籍、数据库,甚至是实时更新的新闻。RAG系统通过一种叫做“向量数据库”的工具,能够快速地从这些海量信息中找到和用户

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值