GraphRAG系统:利用LangChain、Gemini和Neo4j构建智能文档检索与生成解决方案
在人工智能领域,基于私有文档的问答系统一直是研究和应用的热点。传统的检索增强生成(RAG)技术虽然已经取得了显著的进步,但由于其单纯依赖向量相似度,往往难以捕捉实体之间的重要上下文关系。为了突破这一局限,GraphRAG应运而生,它将向量搜索与知识图谱相结合,不仅能够理解语义相似性,还能深入把握概念之间的关系,为文档检索与生成带来了革命性的变革。本文将详细介绍如何使用LangChain、Gemini和Neo4j构建一个生产就绪的GraphRAG系统,探索其架构设计、核心组件和实现细节,并展望其在实际应用中的潜力。
GraphRAG:传统RAG的革命性演进
传统的RAG系统在处理文档时,主要依靠向量相似度来检索相关信息。这种方法虽然在很多情况下有效,但却存在一个根本性的缺陷:它无法充分理解文档中实体之间的复杂关系。例如,在处理法律文档时,传统RAG可能难以把握“当事人”“律师”“案件”之间的关联;在处理技术文档时,也可能无法理解“组件”“接口”“依赖”之间的关系。
GraphRAG的出现完美地解决了这一问题。它通过将知识图谱与向量嵌入相结合,实现了从单纯的语义相似性检索到关系感知检索的跨越。与传统RAG相比,GraphRAG具有以下显著优势: