既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
)
−
m
i
n
(
x
)
x^{\prime} = { {x - mean(x)} \over {max(x) - min(x)}}
x′=max(x)−min(x)x−mean(x)
Scaling to unit length
将某一特征的模长转化为1
x
′
=
x
∣
∣
x
∣
∣
x^{\prime} = {x \over ||x||}
x′=∣∣x∣∣x
案例
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
%matplotlib inline
df = pd.read_csv(
'wine\_data.csv', # 葡萄酒数据集
header=None, # 自定义列名
usecols=[0,1,2] # 返回一个子集
)
df.columns = ['Class label', 'Alcohol', 'Malic acid'] # 类别标签、酒精、苹果酸
df.head()
如上表所示,酒精(百分含量/体积含量)和苹果酸(克/升)的测量是在不同的尺度上进行的,因此在对这些数据进行任何比较或组合之前,必须先进行特征缩放
# Standardization
std_scale = preprocessing.StandardScaler().fit(df[