机器学习 数据预处理之特征缩放(理论+案例)_数据特征缩放 的例题

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化的资料的朋友,可以戳这里获取

)

m

i

n

(

x

)

x^{\prime} = { {x - mean(x)} \over {max(x) - min(x)}}

x′=max(x)−min(x)x−mean(x)​

Scaling to unit length

将某一特征的模长转化为1

x

=

x

x

x^{\prime} = {x \over ||x||}

x′=∣∣x∣∣x​

案例

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import preprocessing
from sklearn.model_selection import train_test_split
from sklearn.decomposition import PCA
from sklearn.naive_bayes import GaussianNB
from sklearn import metrics
%matplotlib inline

df = pd.read_csv(
    'wine\_data.csv',  # 葡萄酒数据集
     header=None,     # 自定义列名
     usecols=[0,1,2]  # 返回一个子集
    )
df.columns = ['Class label', 'Alcohol', 'Malic acid'] # 类别标签、酒精、苹果酸
df.head()

在这里插入图片描述

如上表所示,酒精(百分含量/体积含量)和苹果酸(克/升)的测量是在不同的尺度上进行的,因此在对这些数据进行任何比较或组合之前,必须先进行特征缩放

# Standardization
std_scale = preprocessing.StandardScaler().fit(df[
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值