数据分析案例-基于PCA主成分分析法对葡萄酒数据进行分析_pca数据示例(3)

img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

需要这份系统化资料的朋友,可以戳这里获取

①使用主成分分析对数据进行降维分析

②构建葡萄酒分类模型

2.2数据集介绍

wine样本数据集中是double类型的178 * 14矩阵包括了三种酒中13种不同成分的数量。文件中,每行代表一种酒的样本,共有178个样本,一共有14列,其中,第一个属性是类标识符,分别是1/2/3来表示,代表葡萄酒的三个分类。后面的13列为每个样本的对应属性的样本值。剩余的13个属性是,酒精、苹果酸、灰、灰分的碱度、镁、总酚、黄酮类化合物、非黄烷类酚类、原花色素、颜色强度、色调、稀释葡萄酒的OD280/OD315、脯氨酸。其中第1类有59个样本,第2类有71个样本,第3类有48个样本。具体属性描述如下:

属性 属性描述
target 类别
Alcohol 酒精
Malic acid 苹果酸
Ash
Alkalinity of ash 灰分的碱度
Magnesium
Total phenoids 总酚
Flavonoids 黄酮类化合物
Noflavanoid phenols 非黄烷类酚类
Proanthocyanins 原花色素
Color intensity 颜色强度
Hue 色调
0D280/0315ofdiluted wines 稀释葡萄酒的0D280
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值