【通过Hive清洗、处理和计算原始数据,Hive清洗处理后的结果,将存入Hbase(1)

img
img

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化资料的朋友,可以戳这里获取

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

HBase是一个分布式的NoSQL数据库,基于Hadoop的HDFS文件系统实现数据的存储和管理。以下是HBase的安装与配置过程:

  1. 下载HBase压缩包:从HBase官网下载最新版本的HBase压缩包,解压到安装目录(如:/usr/local/hbase)。
  2. 配置HBase环境变量:编辑/etc/profile文件,添加以下内容:
export HBASE_HOME=/usr/local/hbase
export PATH=$PATH:$HBASE_HOME/bin

  1. 配置HBase集群:在conf目录下,编辑hbase-site.xml文件,将“localhost”替换成本机IP地址。配置Zookeeper的地址:
<configuration>
   <property>
      <name>hbase.master</name>
      <value>localhost:60000</value>
   </property>
   <property>
      <name>hbase.zookeeper.quorum</name>
      <value>localhost</value>
   </property>
   <property>
      <name>hbase.zookeeper.property.dataDir</name>
      <value>/usr/local/zookeeper/zookeeper-3.4.13/data</value>
   </property>
</configuration>

其中,“hbase.zookeeper.quorum”是Zookeeper的地址,“hbase.zookeeper.property.dataDir”是Zookeeper的数据目录。

  1. 配置HBase节点:在conf目录下,编辑regionservers文件,添加每个HBase节点的IP地址,以换行符分隔。
  2. 启动HBase集群:在HBase根目录下,执行以下命令启动HBase集群:
./bin/start-hbase.sh

  1. 验证HBase集群:在浏览器中输入http://localhost:16010,查看HBase集群的状态。

以上就是HBase的安装与配置过程,如果需要进行更详细的配置,可以查阅HBase官方文档。

通过Hive清洗、处理和计算原始数据,Hive清洗处理后的结果,将存入Hbase,海量数据随机查询场景从HBase查询数据

在大数据领域中,Hive和HBase是两个非常重要的组件。Hive是一个基于Hadoop的数据仓库框架,它允许用户使用类SQL的语言(HiveQL)来查询和分析大规模数据。而HBase则是一个分布式的、可扩展的、面向列的NoSQL数据库,它适用于处理海量数据。

在实际应用中,常常需要将Hive清洗、处理和计算原始数据,然后将结果存储到HBase中,以便进行随机查询等操作。这个过程可以分为以下几个步骤:

  1. 数据清洗和处理:首先需要对原始数据进行清洗和处理,以便将数据变为可分析的格式。这个过程可以使用Hive进行,它支持类SQL的语言,可以进行各种数据处理的操作。
  2. 数据导入HBase:清洗处理后的数据,可以通过Hive的HBase存储处理器来导入到HBase中。这个处理器可以将Hive表转化为HBase表,并将数据写入HBase中。
  3. 数据查询:HBase适合进行海量数据的随机查询,可以通过HBase提供的API或者Hive的HBase存储处理器进行查询操作。

在这个过程中,Hive和HBase的底层架构和运行原理都非常复杂。Hive的底层是基于Hadoop的MapReduce计算框架实现的,而Hadoop的计算模型是基于分布式存储和计算的,它将数据分割成多个块,每个块由一些计算机进行计算,最终合并结果。而HBase则是基于Google的BigTable设计的,它使用了Hadoop的分布式文件系统HDFS作为存储层,以及ZooKeeper作为协调层。在HBase中,数据是按照行和列族的方式进行存储的,可以支持高并发的读写操作。

总之,通过Hive清洗、处理和计算原始数据,并将结果存储到HBase中,可以有效地处理大规模数据,并且支持高并发的查询操作。在实际应用中,需要深入理解Hive和HBase的底层架构和运行原理,以便更好地使用它们进行数据分析和处理。

示例代码:

1. Hive数据清洗和处理:

// 创建表
CREATE TABLE original_data (
    id INT,
    name STRING,
    age INT,
    gender STRING,
    address STRING,
    PRIMARY KEY (id)
) ROW FORMAT DELIMITED FIELDS TERMINATED BY ',' STORED AS TEXTFILE;

// 加载数据
LOAD DATA LOCAL INPATH '/path/to/data' OVERWRITE INTO TABLE original_data;

// 数据清洗和处理(如筛选某一列、计算平均值等操作)
SELECT name, age FROM original_data WHERE gender = 'male' AND age > 18;

2. Hive数据导入HBase:

// 创建Hive表
CREATE TABLE hbase_data (
    id INT,
    name STRING,
    age INT,
    gender STRING,
    address STRING,
    PRIMARY KEY (id)
) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler'
WITH SERDEPROPERTIES (
    'hbase.columns.mapping' = ':key,info:name,info:age,info:gender,info:address'
) TBLPROPERTIES ('hbase.table.name' = 'hbase_table');

// 导入数据到HBase
INSERT OVERWRITE TABLE hbase_data SELECT \* FROM original_data;

3. HBase数据查询:

// 使用Java API查询数据
Configuration conf = HBaseConfiguration.create();
HTable table = new HTable(conf, "hbase\_table");
Get get = new Get(Bytes.toBytes("1"));
Result result = table.get(get);
byte[] value = result.getValue(Bytes.toBytes("info"), Bytes.toBytes("name"));
String name = Bytes.toString(value);
System.out.println("Name is: " + name);

// 通过Hive查询HBase数据
SELECT name FROM hbase_data WHERE id = 1;

以上示例代码仅为参考,具体实现方式还需要根据实际情况进行调整。同时,在使用Hive和HBase进行大数据处理时,还需要注意数据分区、性能调优、数据备份等方面的问题,以确保系统的稳定性和可靠性。

将Hive清洗处理后的结果存入HBase

Hive可以将处理后的结果存储到HBase中,这样可以方便地进行海量数据随机查询。下面是一个示例,展示如何将Hive清洗处理后的结果存入HBase中:

1. 创建一个HBase表

create 'mytable', 'cf1'

2. 将Hive表中的数据导入到HBase中

INSERT INTO TABLE hbasetable SELECT \* FROM mytable;

3. 在Hive中创建一个外部表,与HBase表进行关联

CREATE EXTERNAL TABLE hbasetable (id INT, name STRING, age INT, address STRING) STORED BY 'org.apache.hadoop.hive.hbase.HBaseStorageHandler' WITH SERDEPROPERTIES ('hbase.columns.mapping' = ':key,cf1:name,cf1:age,cf1:address') TBLPROPERTIES ('hbase.table.name'='mytable');

4. 查询HBase数据

SELECT id, name, age, address FROM hbasetable WHERE age > 18;

Hive清洗、处理和计算原始数据

Hive是一种基于Hadoop的数据仓库工具,可以将结构化的数据文件映射为一张数据库表,并提供了类SQL查询功能。通过Hive,我们可以对原始数据进行清洗、处理和计算,并将处理后的结果存储到HBase中。

下面是一个示例,展示如何使用Hive清洗、处理和计算原始数据:

  1. 创建一个数据库
CREATE DATABASE mydb;

  1. 创建一个表
CREATE TABLE mytable (id INT, name STRING, age INT, address STRING);

  1. 加载数据
LOAD DATA LOCAL INPATH '/path/to/data' INTO TABLE mytable;

  1. 清洗和处理数据
SELECT id, name, age, UPPER(address) AS address FROM mytable;

  1. 计算数据
SELECT COUNT(\*) FROM mytable WHERE age > 18;

海量数据随机查询场景从HBase查询数据的问题与解决方案

在海量数据随机查询场景中,从HBase查询数据的问题主要包括:

1. 数据过滤效率低

由于HBase的数据存储方式采用按行存储,而非按列存储,因此在进行数据过滤时,需要扫描所有的行数据,效率相对较低。

解决方案:使用HBase的过滤器进行数据过滤,避免扫描所有的行数据,提高查询效率。

2. 数据倾斜问题

在HBase中,如果一些数据的访问频率较高,就会导致数据倾斜,影响查询效率。

解决方案:使用分布式计算框架对数据进行负载均衡,避免数据倾斜。

3. 数据一致性问题

在HBase中,由于数据写入是异步处理,因此在查询数据时,可能会出现数据不一致的问题。

解决方案:使用HBase的一致性机制,保证数据的一致性。例如,在查询数据时,可以设置读取最新版本的数据,并使用乐观锁机制来保证数据的一致性。

4. 数据缓存问题

HBase的数据读取是通过网络进行的,频繁读取数据会导致网络带宽和IO瓶颈。为了解决这个问题,可以使用数据缓存机制,将频繁读取的数据缓存在内存中,提高数据读取效率。

解决方案:使用HBase的缓存机制,可以将查询的结果缓存在HBase的RegionServer上,以提高查询效率,同时可以使用其他缓存技术,如Redis或Memcached,将查询结果缓存在内存中。

Java代码示例

1. 使用HBase过滤器进行数据过滤

HTable table = new HTable(config, "table\_name");
Scan scan = new Scan();
SingleColumnValueFilter filter = new SingleColumnValueFilter(Bytes.toBytes("columnFamily"), Bytes.toBytes("column"), CompareOp.EQUAL, Bytes.toBytes("value"));
scan.setFilter(filter);
ResultScanner scanner = table.getScanner(scan);
for (Result result : scanner) {
    // 处理查询结果
}
scanner.close();


![img](https://img-blog.csdnimg.cn/img_convert/829b95e492a3e0150f428f02edd0fd81.png)
![img](https://img-blog.csdnimg.cn/img_convert/4bbe26ac2f0959651fe4e0d4f7286a37.png)
![img](https://img-blog.csdnimg.cn/img_convert/f08417a892bfb6cfb544b6c4928d3c5b.png)

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

mg-MNNnSpOD-1715718968010)]
[外链图片转存中...(img-8gw7Tyjr-1715718968010)]
[外链图片转存中...(img-JjZzdSha-1715718968010)]

**既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上大数据知识点,真正体系化!**

**由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新**

**[需要这份系统化资料的朋友,可以戳这里获取](https://bbs.csdn.net/topics/618545628)**

<think>好的,我现在需要分析用户的问题:“Doris是否可以替代Hive/HDFS”。用户之前已经询问过Doris的数据模型,现在转向比较Doris与Hive/HDFS的替代可能性。这可能是想了解Doris在数据仓库中的定位,是否可以作为传统Hadoop生态组件的替代方案。 首先,我需要明确HiveHDFS的用途。Hive是基于Hadoop的数据仓库工具,提供SQL查询,适用于处理大规模数据,但通常用于批处理,延迟较高。HDFS是分布式文件系统,提供高容错性的数据存储。而Doris是一个MPP架构的OLAP系统,强调实时分析高并发查询。 接下来,用户想知道Doris是否能替代这两者。需要从功能、适用场景、优缺点等方面进行比较。比如,Hive适合离线批处理,而Doris适合实时分析;HDFS是存储层,Doris本身有自己的存储引擎,可能不直接替代HDFS,但可以结合其他存储系统。 还要考虑用户的具体使用场景。例如,如果用户需要高并发的实时查询,Doris可能更适合;但如果需要处理PB级离线数据,Hive+HDFS可能更合适。同时,Doris的易用性、维护成本、社区支持等方面也是考虑因素。 需要注意避免绝对化的结论,应指出适用情况,比如在某些场景下可以替代,但并非全部。需要举例说明,比如实时报表场景适合Doris,而大规模数据存储仍需HDFS。 另外,用户之前的问题涉及数据模型,可能对Doris有一定了解,现在想扩展到架构替代层面。需要结构清晰,分点讨论,可能分为存储、计算、使用场景等部分。 最后,总结时给出建议,帮助用户根据具体需求选择合适的技术栈。</think>Apache Doris 能否替代 Hive/HDFS,取决于具体业务场景技术需求。Doris Hive/HDFS 在技术定位使用方式上有显著差异,以下是关键对比替代性分析: --- ### **1. 功能定位对比** | **组件** | **核心定位** | **典型场景** | **延迟** | **数据规模** | |---------------|----------------------------------|---------------------------------------|-------------|---------------------| | **Hive** | 基于 Hadoop 的离线数据仓库 | 批处理 ETL、大规模离线分析、数据湖查询 | 高(小时级) | PB 级 | | **HDFS** | 分布式文件存储系统 | 海量数据存储(结构化/非结构化) | 不直接处理 | EB 级 | | **Doris** | 实时分析型 OLAP 数据库 | 高并发实时查询、交互式分析、报表 | 低(亚秒级) | TB~PB 级(需优化) | --- ### **2. Doris 的替代可能性分析** #### **(1)Doris 替代 Hive?** - **可以替代的场景**: - **实时分析需求**:Hive 适合离线批处理,而 Doris 支持毫秒级响应,适合实时看板、即席查询(Ad-hoc)。 > **示例**: > 原 Hive 的每日报表需 T+1 生成,改用 Doris 后可实时更新数据并查询当日累计销售额。 - **高并发查询**:Doris 支持数百甚至上千 QPS,Hive 则受限于 MapReduce/Tez 引擎,并发能力低。 - **简化架构**:Doris 内置计算+存储,无需依赖 Hadoop 生态(HDFS/YARN),运维成本更低。 - **无法替代的场景**: - **超大规模数据离线 ETL**:Hive处理 PB 级数据的复杂 ETL 任务时更稳定(如全量历史数据清洗)。 - **非结构化数据处理**:Hive 支持文本、JSON 等格式,而 Doris 更适合结构化数据。 --- #### **(2)Doris 替代 HDFS?** - **Doris 不是分布式文件系统**: - HDFS 是底层存储,核心是**廉价存储海量数据**(包括图片、日志等非结构化数据)。 - Doris 是数据库,存储结构化数据并优化查询,**无法直接替代 HDFS 的通用存储能力**。 - **替代的间接方案**: - **冷热数据分层**: 将热数据(频繁查询)存入 Doris,冷数据(归档)存入 HDFS,通过 Hive 或 Doris 外部表查询。 > **示例**: > 近3个月交易数据存入 Doris 供实时分析,历史数据存 HDFS,通过 Hive 进行年度离线统计。 - **数据湖架构**: HDFS 作为数据湖存储原始数据,Doris 作为加速层存储聚合后的热数据。 --- ### **3. 典型场景的替代决策** | **场景** | **Hive/HDFS 方案** | **Doris 方案** | **是否可替代** | |-------------------------|------------------------------------|---------------------------------------|--------------| | 每日凌晨生成 T+1 报表 | Hive 定时批处理 | Doris 实时聚合,查询时直接计算 | ✅ 是 | | 用户行为日志分析(TB级) | Hive 离线分析 + HDFS 存储原始日志 | Doris 存储聚合指标,日志存 HDFS | ❌ 部分替代 | | 实时监控大屏(亚秒响应) | 无法满足 | Doris 直接支持 | ✅ 是 | | 存储海量图片/视频 | HDFS 存储 | 不适用 | ❌ 否 | --- ### **4. 迁移注意事项** - **数据规模**: Doris 单表建议控制在 10TB 以内(需合理分区分桶),超大规模数据需配合 HDFS 分层存储。 - **数据更新**: Doris 支持 Upsert(Unique 模型),但频繁更新的场景需测试性能,Hive 更适合离线覆盖更新。 - **生态工具**: Hadoop 生态工具(如 Spark、HBase)与 Hive/HDFS 集成更紧密,Doris 需通过 JDBC/ODBC 对接。 --- ### **5. 总结** - **可以替代 Hive 的场景**: **实时分析、高并发查询、简单 ETL**。Doris 更适合作为 Hive 的查询加速层,而非完全替代。 - **无法替代 HDFS 的场景**: **非结构化数据存储、EB 级冷数据归档**。Doris 需与 HDFS 配合实现冷热分离。 - **混合架构推荐**: ``` 数据接入 → HDFS(原始数据存储) → Hive/Spark(ETL) → Doris(实时分析层) ``` 通过 Doris 加速高频查询,Hive/HDFS 处理低频复杂任务,兼顾实时性与成本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值