我真的花了很久,才理清大模型到底该怎么学!

说句实在的,很多人以为学大模型就是搞点提示词、调个 API,就能搞定一切。

但真想“弄懂它”,甚至“做出点东西”来,不啃几本靠谱的书,真的不行。

我一开始也是刷了一堆教程,收藏了几十个 AI 工具帖,但一到自己动手就抓瞎。直到我静下心认真啃完这些书,才发现——原来很多问题,书里早就帮你解答了。

这几本书是小图一路上踩坑总结的「大模型学习黄金书单」,从编程入门,到深度学习基础,再到 LLM 原理、落地应用,完整一条线,不忽悠、不烧香,适合想认真搞事的朋友!

#1

编程语言基础

Programming Language 

别的不说,谁学 Python 没啃过“蟒蛇书”?

Amazon、京东编程类榜首,影响 250 万读者,可不是吹的。

📌 为什么推荐它?

  • 真·零基础:没有废话,从基础语法讲起,顺着学非常顺畅

  • 实用项目:教你做小游戏、数据可视化、简单网页,入门友好还带成就感

  • 附赠资源超丰富:代码 + 视频 + PPT + 速查手册,一本顶好几本

💬 适合人群:刚入门编程/转行/准备进阶 AI 的基础补课选手

图片

《 Python编程:从入门到实践 (第3版)》

[美]埃里克·马瑟斯 | 著

袁国忠 | 译

Python 入门圣经,影响全球超过 250 万读者,长居 Amazon、京东等网店编程类图书榜首,真正零基础,附赠随书代码+配套视频讲解+速查手册,自学无压力。

#2

深度学习知识

Deep Learning Knowledge 

被称为“鱼书”,是很多人从“听说深度学习”到“我能自己写个神经网络”的第一本书。

📌 它的厉害之处在于:

  • 内容通俗不烧脑:作者是个讲课极清楚的人,逻辑特别顺

  • 不靠太多框架:一步步带你手写出基础神经网络

  • 从数学推导到实战实现,全链路打通

💬 看完之后你就知道,深度学习不是“神秘黑箱”,而是可以拆解、理解、控制的东西。

图片

《深度学习入门:基于Python的理论与实现》

斋藤康毅 | 著

陆宇杰 | 译

深度学习“鱼书”,畅销 10 万册,相比 AI 圣经“花书”,本书更合适入门。本书深入浅出地剖析了深度学习的原理和相关技术,书中使用 Python 3,尽量不依赖外部库或工具,从基本的数学知识出发,带领读者从零创建一个经典的深度学习网络,使读者在此过程中逐步理解深度学习。

#3

大模型基础知识

Basic Knowledge of LLM

这两本书我建议配套看!

✅ 《大模型技术30讲》:由 GitHub 爆火项目作者塞巴斯蒂安·拉施卡创作,采用 Q&A 形式,把最重要的大模型知识点都拆解了。每一讲都讲得很实,有图、有公式、有代码,还有练习题检验学习成果。

✅ 《从零构建大模型》:这本更像是“操作手册”,教你怎么从头构建一个大模型,从数据预处理、预训练、微调、部署全流程都讲。还融入了 DeepSeek 等当下热门模型的实战经验,超级新、超级实用!

💬 如果你不是只想用大模型,而是想做点自己的东西(副业/创业/项目),那这两本必须啃下来。

图片

《大模型技术30讲》

塞巴斯蒂安·拉施卡|著

叶文滔 | 译

GitHub 项目 LLMs-from-scratch(star数43k)作者、大模型独角兽公司 Lightning AI 工程师倾力打造,全书采用独特的一问一答式风格,探讨了当今机器学习和人工智能领域中最重要的 30 个问题,旨在帮助读者了解最新的技术进展。

内容共分为五个部分:神经网络与深度学习、计算机视觉、自然语言处理、生产与部署、预测性能与模型评测。每一章都围绕一个问题展开,不仅针对问题做出了相应的解释,并配有若干图表,还给出了练习供读者检验自身是否已理解所学内容。

图片

《从零构建大模型》

塞巴斯蒂安·拉施卡|著

覃立波,冯骁骋,刘乾 | 译

图灵社区

,赞34

如何从零开始构建大模型的指南,由畅销书作家塞巴斯蒂安•拉施卡撰写,通过清晰的文字、图表和实例,逐步指导读者创建自己的大模型。在本书中,读者将学习如何规划和编写大模型的各个组成部分、为大模型训练准备适当的数据集、进行通用语料库的预训练,以及定制特定任务的微调。此外,本书还将探讨如何利用人工反馈确保大模型遵循指令,以及如何将预训练权重加载到大模型中。还有惊喜彩蛋 DeepSeek,作者深入解析构建与优化推理模型的方法和策略。

#4

大模型开发及应用

Get Started with LLM Applications

✅ 《大模型应用开发极简入门》:非常适合“我就想做点应用出来”的朋友。一步步教你做 RAG 系统、问答机器人,还教你对接 GPT-4、ChatGPT,理解 prompt engineering,不讲玄学,直接带你上手。

✅ 《一本书玩转 DeepSeek》:作者是 AI 圈非常活跃的“花生”老师,书里全是能落地的案例,涵盖副业、办公、数据分析、企业级场景等 13 大模块,90 个实用场景,说白了就是“大模型能干啥”,看完心里贼有底。

💬 如果你已经在用 AI 工具,想更进一步做点像样的“作品”,这两本堪称秘笈。

图片

《大模型应用开发极简入门:基于GPT-4和ChatGPT(第2版)》 

奥利维耶·卡埃朗,[法] 玛丽–艾丽斯·布莱特 | 著

何文斯 | 译

深受读者喜爱的大模型应用开发图书升级版,作者为初学者提供了一份清晰、全面的“最小可用知识”,带领你快速了解 GPT-4 和 ChatGPT 的工作原理及优势,并在此基础上使用流行的 Python 编程语言构建大模型应用。

升级版在旧版的基础上进行了全面更新,融入了大模型应用开发的最新进展,比如 RAG、GPT-4 新特性的应用解析等。随书赠 DeepSeek × Dify 应用开发案例,书中还提供了大量简单易学的示例,帮你理解相关概念并将其应用在自己的项目中。

图片

《一本书玩转 DeepSeek》

陈云飞(@花生)|著

超牛的 DeepSeek 应用书,作者是 AI 大佬花生,全书涉及 13 大场景,90 个实用案例,7 大技巧,4 大王炸组合,内容涵盖高效办公、副业变现、数据分析、企业级 DeepSeek 使用方案等等。带你轻松掌握 DeepSeek 核心技巧。


学会用 AI 是一回事,能真正理解、掌握、驾驭 AI,是另一回事。

今天推荐的这些书,不是为了让大家“屯书”,而是它们真的能让你走得更远。

甚至不用全都立刻看完,但你至少得知道,这条路上你有这些“可靠的参考系”。

码住、慢慢啃,你一定能走出自己的 AI 路。

 一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

<think>好的,用户想了解人工智能、Agent和大模型之间的关系。我需要先理清这三个概念的定义和它们之间的联系。 首先,人工智能是一个广泛的领域,涵盖了使机器具备智能行为的各种技术。大模型,比如GPT-4,属于人工智能中的一部分,特别是生成式AI,它们通过大量数据训练获得理解和生成语言的能力。而Agent,或者叫智能体,是建立在AI技术之上的应用,能够自主执行任务,比如自动处理数据或生成报告。 根据引用[1],AI Agent是大模型的上层应用,就像人的手脚工具,而大模型是大脑。引用[2]也提到,大模型是处理语言的核心,而Agent是具备自主能力的执行者。所以,我需要强调Agent如何利用大模型的能力来执行具体任务,同时补充它们各自的角色差异。 用户可能还希望了解实际例子,比如财报分析Agent(引用[4]),这样能更直观地展示三者关系。要确保回答结构清晰,分点说明,并用比喻帮助理解。同时,检查是否有遗漏的关联点,比如大模型作为基础,Agent作为应用层,都属于人工智能的组成部分。 最后,生成的相关问题需要引导用户深入探讨,比如应用场景、技术挑战等,这样能帮助用户进一步习。确保引用正确,每个引用对应到相应的解释部分,比如[^1]对应Agent作为上层应用,[^4]对应具体案例。</think>### 人工智能、Agent 和大模型的关系解析 #### 1. **人工智能AI)** 人工智能是研究如何使计算机系统模拟人类智能行为的科,涵盖机器习、自然语言处理、计算机视觉等多个领域。大模型和Agent都属于AI技术的具体实现形式。 #### 2. **大模型(Large Language Model, LLM)** 大模型AI的核心技术之一,例如GPT-4、Gemini等。它通过海量数据训练,具备语言理解、生成和推理能力,但本质上是一个“被动”的智能体,需要外部指令触发响应。 **特点**: - 功能类似人类大脑,专注于信息处理与生成 - 依赖输入输出交互,缺乏主动行动能力 - 示例:生成文本、解答数问题、翻译语言 $$ P(w_{t}|w_{1},w_{2},...,w_{t-1}) = \text{softmax}(W \cdot h_{t} + b) $$ #### 3. **AI Agent(智能代理)** AI Agent是构建在大模型之上的应用系统,通过集成工具调用、环境感知和自主决策能力,实现任务的主动执行。 **核心组成**: - **大脑**:大模型提供认知能力 - **工具**:调用API、数据库、传感器等 - **记忆**:短期/长期任务记忆管理 - **规划**:任务拆解与执行路径优化 **示例**: - 财报分析Agent(引用[^4])自动收集数据→分析→生成报告 - 智能家居Agent根据环境调整温度、灯光 #### 4. **三者关系总结** - **层级结构**: 人工智能 > 大模型 > AI Agent - **类比**: - 人工智能 ≈ 人类智能的抽象概念 - 大模型 ≈ 人类的大脑(思维能力) - AI Agent ≈ 具备躯体和工具的人类(行动能力) **交互示意图**: ``` 用户指令 → AI Agent(规划任务) → 大模型(生成策略) → 工具调用(执行动作) → 反馈结果 ``` #### 5. **技术演进方向** - **大模型**: 提升多模态理解、降低幻觉问题(引用[^3]) - **AI Agent**: 强化工具调用鲁棒性、动态环境适应能力(引用[^2])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值