字节开源的多模态端到端文档解析模型-Dolphin

下面来看一下字节最新开源的多模态文档解析方案,笔者实际测下来性能还有待提升(鉴于合成数据,泛化性还较差,存在幻觉),不过思路可以借鉴下,供参考。

Dolphin性能

Dolphin性能

创新点

  • 两阶段解析架构:Dolphin采用了分析-解析范式,首先进行页面级布局分析,生成结构化布局元素序列,然后在第二阶段通过异构锚点提示进行并行内容解析。

  • 端到端的文档解析,模型参数量小(300M+),易于落地

  • 提供了数据合成的思路,大规模数据增强模型的泛化能力

  • 提供了位置坐标,通过并行解析的方式加快了解析速度

模型架构与方法

Dolphin 的两阶段文档图像解析范式概述

Dolphin 的两阶段文档图像解析范式概述

模型架构

类似donut,基于VisionEncoderDecoderModel架构,视觉编码器:donut-swin + 解码器:mbart,因此可以看出,模型侧并没有什么创新,创新点主要在于数据构建策略上。

方法

分两个阶段:

1.1 第一阶段:页面级布局分析

(1) 图像编码(Page Image Encoding)

  • 使用 Swin Transformer 提取文档图像的视觉特征,输出形状为 ,其中:

    • d 是嵌入维度

    • N 是图像被分割的 patch 数量

  • 输入图像会被 调整大小并填充 到固定尺寸(如 896×896),以保持长宽比,避免文本变形。

(2) 布局序列生成(Layout Sequence Generation)

  • 使用 mBart 解码器,在 布局分析提示(Playout 的引导下,按阅读顺序生成文档元素的序列 L = {l₁, l₂, ..., lₙ},其中每个元素 lᵢ 包含:

    • 类型(如文本段落、表格、公式)

    • 边界框(bounding box)

  • 提示示例

    Parse the reading order of this document.
    

1.2 第二阶段:元素级内容解析

(1) 元素图像编码(Element Image Encoding):对第一阶段提取的每个元素 lᵢ,从原图中裁剪出对应的区域 Iᵢ,并用 Swin Transformer 编码,得到该元素的视觉特征。

(2) 并行内容解析(Parallel Content Parsing):对每个裁剪后的元素图像 Iᵢ,结合 特定类型的提示(pᵢ,由解码器并行生成解析结果:

  • 表格 → 使用 P_table 提示,解析为 HTML 格式

  • 公式 → 使用 P_paragraph 提示(与文本段落相同),解析为 LaTeX 格式

  • 文本段落 → 使用 P_paragraph 提示,解析为纯文本

  • 提示示例

  • 表格解析:Parse the table in the image.

  • 文本/公式解析:Read text in the image.

图片

小结:并行解码的优势:并行处理多个元素,比串行解析更快(实验显示速度提升 ~2×)。每个元素的解析独立进行,减少长序列建模的误差累积。


1.3. 数据集构建

Dolphin 使用 3000万+ 样本 进行训练,涵盖多种文档类型和解析任务:

数据来源

  • 混合文档:教育材料(试卷、教材)、出版物(杂志、报纸)、商业文档(PPT、报告)。

  • HTML:从维基百科渲染生成,增强视觉多样性。

  • LaTeX:从 arXiv 论文提取,保留结构信息。

  • Markdown:从 GitHub 渲染,支持表格和公式。

  • 表格 & 公式:PubTabNet、PubTab1M(表格)、arXiv 公式(LaTeX 渲染)。

图片

实验性能

图片

图片

图片

图片

图片

图片

 大模型&AI产品经理如何学习

求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击下方图片前往获取

3.技术文档和电子书 

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。



4.LLM面试题和面经合集


这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。



👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集***

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值