大家好,Deepseek-R1 5 月 28 号最新发布小版本更新,网上已经有很多测评,根据各种基准测评的结果,其在数学和编程、逻辑与通用能力上,有不少提升。不过模型依然还没有支持图像、语音等多模态的输入,深度思考模式可能持续时间长等。
我这里也是等不及体验一下效果,开始动手吧!
1. 获取最新版本
-
访问Ollama,https://ollama.com/,
-
搜索 deepseek-r1-0528
找到最新模型,空间3.5G,小于已有 8B 模型
R1 的 8B 模型是 5G 占用空间
2. 下载安装并完成模型配置
-
下载模型,安装最新版本
ollama run sam860/deepseek-r1-0528-qwen3:8b-Q2_K_XL
-
完成模型安装
-
在 dify、cherry studio中完成新模型的设置
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
Cherry Studio设置:
3. 效果对比和体验
-
创建一个Agent 应用,比如面试助手,选择deepseek-r1新老模型进行效果比对
第一个问题:招聘算法工程师提供面试题目
结果:可以看到,新模型思考更快,而且给出的问题更加自然,且给出了问题设计的逻辑。
新模型详细输出如下:
以下是3道精心设计的问题,旨在帮助招聘AI算法工程师时识别候选人的真实能力和思考过程:
-
"请分享一个你曾经遇到过的最具挑战性的机器学习项目。描述你是如何确定问题的核心,并选择合适的模型来解决它。在过程中,有没有遇到过计算资源不足或数据不平衡的情况?如果你当时面临这种情况,请详细说明你的应对策略以及最终结果是如何提升的。" - 这个问题能考察候选人处理复杂项目的实际能力、解决问题的方法和抗压性。
-
"你在项目中如何平衡算法效率与准确性之间的关系?请举一个具体例子,解释你做出决策的过程,并讨论这种平衡在不同应用场景下的重要性。" - 通过这个问题,可以了解候选人在权衡技术细节上的思考方式及其实际应用能力。
-
"能否描述一次失败的机器学习项目经历?你在其中学到了什么,以及如何改进策略来避免类似问题的发生?" - 此题旨在评估候选人从失败中吸取教训的能力,并展示其反思和改进工作的思维方式。
第二个问题:写一段代码(注意对助手的设定是一个 AI 面试助手,不是代码助手)
结果:可以看到,新模型思考中坚持提示词给的定位和主题,最后给生成的是三个和冒泡算法相关的问题。
第三个问题:我们修改一下助手的设定,让他真的能帮我们写一个代码
结果:
1. 打招呼阶段,新模型思考和生成的内容看着会更友好自然一些,返回多了自己能力的设定和介绍。
2. 在思考和生成速度上,新模型确实更好,提供了完整的说明
以下是完整的代码:
def bubble_sort(arr):
"""
冒泡排序算法实现
参数:
arr: 要排序的列表
返回:
排序后的列表
"""
# 复制输入数组避免修改原数据(深拷贝)
sorted_arr = arr[:] # 使用切片操作创建副本
# 冒泡排序的核心是重复遍历列表比较相邻元素
n = len(sorted_arr)
for i in range(n):
# 每一轮将最大的未排序元素移到末尾
swapped = False
for j in range(i, n-1):
# 如果当前元素大于下一个元素,则交换位置
if sorted_arr[j] > sorted_arr[j+1]:
# 交换操作使用tuple解包实现,简洁高效
sorted_arr[j], sorted_arr[j+1] = sorted_arr[j+1], sorted_arr[j]
swapped = True
# 如果一轮内没有发生交换,则排序完成提前终止循环
if not swapped:
break
return sorted_arr
# 示例使用冒泡排序函数
if __name__ == "__main__":
test_array = [6, 2, 3, 1, 4]
print("原始数组:", test_array)
result = bubble_sort(test_array.copy()) # 避免修改原列表
print("使用冒泡排序后的结果:", result)
综合来看,新模型占用更小,速度更快,效果要比原有的 8B模型有所提升。你也来动手体验一下吧~
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
一、大模型风口已至:月薪30K+的AI岗正在批量诞生
2025年大模型应用呈现爆发式增长,根据工信部最新数据:
国内大模型相关岗位缺口达47万
初级工程师平均薪资28K
70%企业存在"能用模型不会调优"的痛点
真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!
二、如何学习大模型 AI ?
🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工
📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
* 大模型 AI 能干什么?
* 大模型是怎样获得「智能」的?
* 用好 AI 的核心心法
* 大模型应用业务架构
* 大模型应用技术架构
* 代码示例:向 GPT-3.5 灌入新知识
* 提示工程的意义和核心思想
* Prompt 典型构成
* 指令调优方法论
* 思维链和思维树
* Prompt 攻击和防范
* …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
* 为什么要做 RAG
* 搭建一个简单的 ChatPDF
* 检索的基础概念
* 什么是向量表示(Embeddings)
* 向量数据库与向量检索
* 基于向量检索的 RAG
* 搭建 RAG 系统的扩展知识
* 混合检索与 RAG-Fusion 简介
* 向量模型本地部署
* …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
* 为什么要做 RAG
* 什么是模型
* 什么是模型训练
* 求解器 & 损失函数简介
* 小实验2:手写一个简单的神经网络并训练它
* 什么是训练/预训练/微调/轻量化微调
* Transformer结构简介
* 轻量化微调
* 实验数据集的构建
* …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
* 硬件选型
* 带你了解全球大模型
* 使用国产大模型服务
* 搭建 OpenAI 代理
* 热身:基于阿里云 PAI 部署 Stable Diffusion
* 在本地计算机运行大模型
* 大模型的私有化部署
* 基于 vLLM 部署大模型
* 案例:如何优雅地在阿里云私有部署开源大模型
* 部署一套开源 LLM 项目
* 内容安全
* 互联网信息服务算法备案
* …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】