打造专属AI助手:Dify + Qwen3大模型本地部署,保姆级教程详解!

1️⃣ 安装 Docker —— 打开 AI 世界的钥匙 🐳

🔗 官网直达:https://www.docker.com/  

第一步:访问 Docker 官网 → 点击【Download Desktop】按钮下载安装包 → 根据电脑选择 **Windows AMD 版本**(其他系统选对应版本即可)!  

图片

📌 安装提示:双击安装包 → 点击【OK】确认安装 → 安装完成后桌面会出现 Docker 鲸鱼图标!  

图片

💡 首次启动:双击图标 → 点击【Accept】接受协议 → 提示登录?直接点击【Sign up】注册账号即可!  

图片

图片

✅ 登录成功:界面出现鲸鱼标志和“Containers”标签页 → Docker 安装完成!  

图片

2️⃣ 安装 Ollama —— 本地大模型运行的核心 🔥

🔗 官网直达:https://ollama.com/  

操作步骤:进入官网 → 点击【Download for Windows】下载客户端 → 双击安装包一键安装!  

图片

📌 无需配置:安装后自动完成环境变量设置 

✨ 验证成功:  

图片

3️⃣ 部署 Qwen3 大模型 —— 让 AI 为你打工 💡

🔗 模型库直达:https://ollama.com/library/  

选模型秘诀:Qwen3:8B 性价比超高!性能吊打 DeepSeek R1,小白首选!  

图片

📌 安装指令:复制页面上的 `ollama pull qwen3:8b` 命令 → 粘贴到命令行回车执行!  

图片

🔄 下载过程:命令行显示 `[===>]` 进度条 → 等待 5-10 分钟(根据网络速度)→ 出现 `success` 提示!  

图片

🧪 测试大招:输入 `ollama run qwen3:8b` → 输入问题“你好吗?” → 模型秒回复 → 本地部署成功!  

图片

4️⃣ 安装 Dify —— 搭建 AI 助手的百宝箱 🧰

🔗 GitHub 下载:https://github.com/langgenius/dify  

操作流程:点击【Code】→ 【Download ZIP】下载压缩包 → 解压到本地文件夹 → 双击进入 `dify/docker` 目录!  

图片

图片

🔧 配置关键:  

1. 将 `.env.example` 重命名为 `.env`  

图片

2. 用记事本打开 `.env` → 滚动到文件末尾 → 添加以下两行:  

   ```  

   CUSTOM_MODEL_ENABLED=true  

   OLLAMA_API_BASE_URL=host.docker.internal:11434  

   ```  

图片

3. 保存文件 → 右键点击文件夹空白处 → 选择【Open Terminal】→ 输入命令:  

   ```bash  

   docker compose up -d  

   ```  

图片

🔄 启动成功:终端显示如下

图片

 → 浏览器访问 `http://127.0.0.1/install` → 填写邮箱、用户名、密码 → 点击【设置】!  

图片

🎉 恭喜!出现 Dify 首页 → 本地部署完成!  

图片

5️⃣ 关联 Dify 与 Qwen3 —— 让 AI 助手听你的指令 🎯

操作步骤:  

1. 登录 Dify → 点击右上角头像 → 选择【Settings】

图片

→ 选择模型供应商

图片

2. 找到 Ollama → 点击【Install】按钮 → 等待安装成功!  

图片

3. 点击【Add Model】

图片

→ 填写:  

   - **Model Name**: `qwen3:8b`  

   - **Base URL**: `http://host.docker.internal:11434`  

   - 其他参数保持默认 → 点击【Save】  

图片

4. 创建助手:点击【Create App】→ 输入名称(如“我的Qwen3助手”)→ 选择【Chat】模板 → 点击【Create】  

图片

🚀 大功告成:进入助手页面 → 开始和你的本地 AI 聊天吧!  

图片

 如何学习AI大模型?

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值