- 博客(719)
- 收藏
- 关注
原创 7月最新大模型八股文,三天背完通过率超98%——附【大模型面试题合集】pdf
大模型算法岗面试题汇总 随着大模型技术的快速发展,相关岗位竞争激烈。本文整理了大模型算法岗常见面试题,涵盖基础和进阶内容: 基础篇 主流开源模型体系:Transformer、PyTorch Lightning等 模型架构差异:prefix LM与causal LM的区别 大模型涌现能力的原因 主流开源模型:GPT、BERT、T5系列 模型幻觉问题及解决方案 Tokenizer实现原理(BPE算法) 常用激活函数:ReLU、GeLU等 进阶篇 输入长度限制问题 复读机问题成因及缓解方法 模型选型建议(BERT
2025-07-15 15:01:18
874
原创 零代码!只需3步用DeepSeek+Ollama+AnythingLLM打造免费AI本地专属知识库(含原理)_ollama deepseek anythingllm
AI时代如何安全高效管理知识?3步搭建本地私有智能知识库 在数据爆炸的今天,个人和企业普遍面临文档混乱、检索低效的痛点。本文提出基于DeepSeek+Ollama+AnythingLLM的零代码解决方案,通过三大核心技术——嵌入模型(语义编码)、向量数据库(智能检索)、LLM大模型(智能应答),实现本地化知识管理。 核心优势: 1️⃣ 数据100%私有,敏感信息不出内网; 2️⃣ 低成本部署,普通电脑即可运行; 3️⃣ 智能问答,支持多格式文档自动解析,答案附带溯源。 三步搭建流程: 安装Ollama运行D
2025-07-15 14:55:56
173
原创 招聘平台大模型之战:我去求职,面试官竟然是AI_招聘领域大模型
摘要: 2025年校园招聘竞争激烈,毕业生投递量激增,HR面临简历筛选压力,AI技术成为助力。AI工具如Yeebot、HRMind等已应用于简历匹配、JD生成、智能面试等环节,提升效率。然而,招聘中的隐藏信息(如属相、星座偏好)和求职者美化简历等问题,AI尚难完全解决。部分HR担忧被取代,但调研显示未来更可能是人机协同。HR需向战略型转型,AI则需与人类价值观对齐,确保公平性。大模型虽优化流程,但人性化难题仍是挑战。(149字)
2025-07-14 16:31:23
709
原创 多轮对话中让AI保持长期记忆的8种优化方式(附案例和代码)_ai长期记忆
文章摘要: 本文探讨了在多轮对话中实现长期记忆保持的8种方法,结合LangChain代码展示了不同记忆方式的应用场景。1)全量历史对话适用于客服场景,保持连贯性;2)滑动窗口记忆适合电商咨询,聚焦最近问题;3)实体记忆在法律咨询中保留关键信息;4)知识图谱记忆用于医疗咨询,建立症状关联;5)摘要记忆在教育辅导中提炼重点;6)摘要缓冲记忆兼顾技术支持的近期细节与历史概要;7)令牌缓冲记忆在金融咨询中平衡近期与关键信息;8)向量检索记忆快速定位新闻事件相关背景。文章还提供了AI大模型学习资源包,包含书籍、报告、
2025-07-14 16:27:54
332
原创 DeepSeek+dify 本地知识库:高级应用Agent+工作流_dify工作流
本文介绍了Dify平台的三大核心功能:知识库管理、工作流编排和智能体应用。知识库支持文档上传与智能分段,提供向量检索功能;工作流可通过可视化节点组合实现复杂任务,支持变量传递和条件判断;智能体则能快速构建自动化应用。Dify的灵活性体现在零代码搭建能力,让非技术人员也能像拼积木一样创建AI应用。文章重点解析了知识库分段优化技巧、工作流变量类型及节点功能,并展示了如何利用模板快速构建应用。该平台通过模块化设计降低了AI应用开发门槛,适用于企业自动化和个人项目开发。
2025-07-14 16:25:50
540
原创 2025别再乱学大模型了,按这个大模型学习顺序学效率翻倍!
2025年AI大模型学习路线指南:从零基础到实战进阶 摘要:本文针对2025年AI大模型学习需求,系统梳理了高效学习路径,避免常见误区。学习路线分为四个阶段:1-2周基础认知(理解原理与应用场景)、3-6周核心实践(掌握Prompt工程、RAG、LangChain等工具)、2-3个月深度优化(学习微调与评估方法),最后持续项目实战。强调"先建立框架再深入细节"的学习逻辑,推荐结合HuggingFace、LangChain等工具实践,并完成PDF问答系统等实战项目。文章指出系统性学习+持续
2025-07-03 17:56:56
1185
原创 超实用!用 Ollama + DeepSeek + Dify 搭建本地知识库,提升企业效率_ollama+deepseek+dify
为啥要搭建本地知识库?现在企业内部信息管理太难了,数据到处都是,检索效率低得可怜,还缺乏智能化支持。尤其是面对海量非结构化数据,企业很难快速提取有价值的信息,决策效率低得不行。要是能有个工具解决这些问题,那可太棒了!
2025-07-03 17:33:11
857
原创 基于RAG的to B智能体(Agent)应用实践_rag 智能体
摘要:文章探讨了在CRM系统中应用RAG(检索增强生成)技术构建智能体(Agent)以优化客户筛选流程。传统筛选方式操作繁琐且效率低,而基于RAG的“视图助手”Agent通过语义理解实现一步式筛选。初期方案因大模型幻觉问题效果不佳,后采用RAG技术将过滤条件及其参数向量化存储,通过相似度检索提高准确性。该方案简化了筛选步骤,提升了用户体验,展示了RAG在to B领域的创新应用潜力。(149字)
2025-07-03 17:30:01
978
原创 【大模型实战篇】创建有效的大模型提示词Prompt(提示词工程)_大模型提示词生成
摘要:随着生成式AI工具的普及,如何撰写有效提示词(prompts)成为提升与大模型交互质量的关键。本文总结了优质提示词的核心要素:明确目标、提供适当上下文、定义输出格式及设置角色。具体策略包括分步骤拆解复杂任务、让模型自检推理过程、利用少样本提示技术,并注意上下文窗口限制。通过示例展示如何结合货币政策与财政政策分析股市走向,体现结构化提示的应用。文章强调提示词清晰度与具体性的重要性,为使用者优化AI交互体验提供实用指南。(149字)
2025-07-03 17:10:21
694
原创 一文读懂「Prompt Engineering」提示词工程 基础版
提示工程(Prompt Engingering),也被称为上下文提示(in-ContextPromnpting),指的是通过结构化文本等方式来完善提示词,引导LLN输出我们期望的结果。通过提示词工程可以在不更新模型权重的情况下,让LLM完成不同类型的任务。其主要依赖于经验,而且提示词工程方法的效果在不同的模型中可能会有很大的差异,因此需要大量的实验和探索
2025-07-03 17:07:12
626
原创 大模型本地化部署终于出书了!!《ChatGLM3大模型本地化部署、应用开发与微调》(附PDF)_chatglm3大模型本地化部署、应用开发与微调下载
《ChatGLM3大模型本地化部署与应用开发》是一本专注于深度学习与大模型实战的指南。作为《PyTorch 2.0深度学习从零开始学》的姊妹篇,本书通过13个章节系统介绍了大模型的本地化部署与应用开发全流程,涵盖环境搭建、gradio云上部署、LangChain智能问答系统开发、知识图谱抽取等核心内容,并包含财务报表分析等企业级应用案例。书中既有PyTorch 2.0环境配置等基础内容,也深入探讨了Template与Chain机制、多文本检索增强等进阶技术,为开发者提供从理论到实践的完整学习路径,助力读者掌
2025-07-03 11:47:12
1032
原创 LLM——10个大型语言模型(LLM)常见面试题以及答案解析_llm 事实类问题 分析类问题
本文总结了大型语言模型(LLM)面试中的常见问题:1.减轻提示学习偏见的最佳方法是提示校准(C);2.并非所有文本任务都需要向量存储,如情感分析和翻译;3.数据增强(C)不是专门用于对齐人类价值观的技术,而RLHF和DPO是;4.未完整呈现的第四题涉及RLHF中的"reward hacking"概念。这些问题涵盖了LLM的核心技术要点,包括偏差处理、存储需求和对齐方法等关键知识点。
2025-07-03 11:39:55
623
原创 高级检索增强生成技术(RAG)全面指南:原理、分块、编码、索引、微调、Agent、展望_rag原理
本文系统梳理了检索增强生成(RAG)技术的关键实现方法。RAG通过检索外部信息作为上下文,缓解大语言模型的幻觉问题。文章首先介绍了基础RAG流程:文本分块、向量化、索引构建和提示生成。重点探讨了高级RAG技术中的分块策略,包括固定大小分块、内容感知分块(句子分块、递归分块等)及优化方法,强调需根据数据特性、模型限制和应用场景选择合适的分块方案。文章为开发者提供了RAG技术的系统化实践指导,有助于构建更可靠的生成式AI系统。
2025-07-03 11:36:23
619
原创 用大模型做一个聊天机器人!(非常详细)大模型做聊天机器人保姆级教程!_聊天大模型
摘要: 聊天机器人看似简单,但实际开发涉及复杂技术。通过大模型API(如阿里通义千问)可快速实现基础对话功能,核心是定义角色(如system/user)和上下文管理。然而,实际应用(如智能客服)需解决行业知识不足、实时信息更新、准确性保障等问题,可能结合RAG、AI Agent、TTS等技术。此外,集成AIGC能力(文档处理、语音交互等)可提升体验,表明聊天机器人背后需庞大系统支撑,技术复杂度远超表面。
2025-06-27 10:30:00
831
原创 2025AI大模型时代:程序员面临的挑战与机遇,及如何抓住AI风口转行大模型?
近年来,人工智能技术的快速发展让AI大模型成为科技领域的“新宠”。从GPT、BERT到如今的多模态大模型,AI正以前所未有的速度改变着各行各业。在这场技术变革中,程序员的角色也在悄然发生转变。一方面,传统编程技能面临被AI工具替代的风险;另一方面,掌握AI大模型技术的人才成为市场上的“香饽饽”。那么,在这个AI大模型时代,程序员究竟面临着哪些挑战和机遇?又该如何抓住风口实现转型呢?
2025-06-27 10:15:00
1728
原创 Embedding模型选型思路:决定知识库与RAG的准确率上限!
Embedding模型选型思路与性能对比 嵌入模型(Embedding)作为AI核心技术,将非结构化数据映射为低维向量,实现语义特征捕捉(如文本嵌入可达1536维)。当前主流模型在MTEB基准测试中表现差异显著: 性能前三模型: Gemini-embedding-exp-03-07:3072维向量,平均得分68.32,STS任务79.40分 Linq-Embed-Mistral:7B参数量,4096维,平均61.47分 gte-Qwen2-7B-instruct:3584维,任务平均62.51分 关键发现:
2025-06-27 10:00:00
650
原创 【RAG实践】Rerank,让RAG更近一步
本文介绍了如何结合Rerank技术优化RAG(检索增强生成)系统,通过LlamaIndex框架和通义千问1.5大模型,构建更高效的本地知识库问答机器人。文章重点阐述了Rerank的原理和作用,即通过重新排序和筛选检索结果提升回答准确率。实践环节详细展示了环境配置、模型加载(使用GTE文本向量和bge-reranker-v2-m3)、数据处理以及系统搭建的全流程,并提供了在魔搭社区PAI-DSW平台的运行指南。该方法在不损失准确性的前提下显著提升了查询效率。
2025-06-26 23:22:11
759
原创 内行人都在学的大模型黑书——外网爆火的LLM应用手册来了!
《基于GPT-3、ChatGPT、GPT-4等Transformer架构的自然语言处理》可作为所有对Transformer 工作原理感兴趣的人的参考书。作者在理论和实践两方面都做出了出色的工作,详细解释了如何逐步使用Transformer。阅读完本书后,你将能使用这一最先进的技术集合来增强你的深度学习应用能力。本书在详细介绍BERT、RoBERTa、T5 和GPT-3 等流行模型前,先讲述了Transformer 的架构以便为你的学习奠定坚实基础。本书还讲述了如何将Transformer 应用于许多用例,如
2025-06-26 06:40:31
1332
原创 一文读懂RAGFlow:从 0 到 1教你搭建RAG知识库
《RAGFlow知识库搭建指南》摘要:RAGFlow是一种结合检索技术与生成式AI的创新系统,通过检索模块从海量数据中快速定位信息,再由生成模块整合成自然语言响应。该系统突破传统模型的记忆限制,在客服、问答、推荐等场景显著提升响应质量与效率。核心优势包括:高效数据整合、生成质量优化及多领域适用性。文章详细解析了RAGFlow的双模块架构(检索+生成),并附系统架构图,为开发者提供实践参考。(149字)
2025-06-26 06:35:36
946
原创 RAG 知识库搭建:Ollama+AnythingLLM 搭建本地知识库(附教程)_anything llm+ollama
RAG(检索增强生成)是一种结合信息检索与语言模型生成能力的自然语言处理技术,能够解决传统大语言模型(LLM)在开放域问题中的信息容量和时效性局限。通过动态接入外部知识库,RAG为LLM提供了即时扩展知识的能力,使其在问答、文本生成等任务中表现更精准。文章介绍了基于Ollama、Qwen2.5和AnythingLLM搭建本地知识库的实践方案,突出了RAG在特定领域知识应用中的优势。
2025-06-26 06:32:51
543
原创 【最新综述】详解‘大模型+强化学习’的四条主流技术路线_强化学习 学习路线
用大模型来辅助强化学习,可以提高模型在多任务学习、样本利用率、任务规划等复杂任务下的能力,该论文综述了LLM-enhanced RL领域的最新进展,总结了LLM-enhanced RL的主要技术框架、特性以及四种主要技术路线;并分析了未来该方向的机会与挑战。
2025-06-24 19:59:27
1010
原创 打算转行AI大模型算法工程师,前景怎么样?_跨行ai算法工程师
摘要: GPT模型快速发展推动AI迈向"类人化",GPT-4已具备专业考试、复杂任务处理及创造能力,将重塑就业结构。脉脉报告显示,AI行业人才紧缺指数达0.83,3-5年经验者年薪可达40-80万,且35岁以上从业者占比33%,年龄包容性较强。但岗位要求较高,需掌握Transformer/GPT等算法及NLP项目经验。建议转向AI大模型领域,需系统学习LLM技术、行业应用及微调开发等。资料包涵盖学习路线、行业报告及实战案例,助力提升职场竞争力。 (字数:149)
2025-06-24 19:57:28
1296
原创 保姆级Agent(智能体)框架Dify部署流程
Dify是一个开源的LLM的Agent(智能体)应用开发平台,今天咱们详细介绍下Dify的安装步骤和使用场景。
2025-06-23 23:49:32
923
原创 Dify MCP 保姆级教程来了!
大语言模型,例如 DeepSeek,如果不能联网、不能操作外部工具,只能是聊天机器人。除了聊天没什么可做的。而一旦大语言模型能操作工具,例如:联网/地图/查天气/函数/插件/API 接口/代码解释器/机械臂/灵巧手,它就升级成为智能体 Agent,能更好地帮助人类。今年爆火的 Manus 就是这样的智能体。众多大佬、创业公司,都在 All In 押注 AI 智能体赛道。也有不少爆款的智能体产品,比如 Coze、Manus、Dify。
2025-06-23 23:46:38
800
原创 2025大模型技术基础学习路线,想要学好大模型应该具备哪些能力?
大模型技术学习路线指南 掌握大模型技术需要系统学习以下核心内容: 1️⃣ 理论基础 理解AI基础概念、机器学习、深度学习原理,掌握神经网络、激活函数、反向传播等核心算法。 2️⃣ 编程基础 Python为主,辅以工程语言(Java/Go),用于模型开发及上层应用构建。 3️⃣ 深度学习框架 熟练使用PyTorch、TensorFlow等工具,高效处理数据并实现经典模型架构。 4️⃣ 领域知识 结合NLP、CV等应用场景,学习分词、语义分析等专业内容,避免技术空心化。 5️⃣ 算法能力 强化数学与算法基础,这
2025-06-22 09:33:21
867
原创 淘宝直播数字人LLM推理优化:模型蒸馏与路径压缩实践
淘宝直播数字人LLM推理优化实践:通过模型蒸馏与路径压缩技术提升互动性能 本文分享了淘宝直播数字人互动场景下的LLM优化实践。针对直播弹幕互动中面临的语义模糊、多轮对话理解和实时回复等挑战,团队进行了DeepSeek-R1模型性能验证与优化。为解决推理时长问题,设计了三种蒸馏方案,最终选择DeepSeek-R1-Distill-Qwen基座方案,性能提升8pt。但14B模型推理时间仍不达标,7B模型性能不足。为此创新提出DP-DPO(双偏好DPO)方法,在缩短推理路径的同时提升模型性能(+0.4pt),并通
2025-06-22 09:27:31
916
原创 万字长文!大模型(LLM)推理优化技术总结(非常详细)
大模型推理优化技术总结 本文系统介绍了大语言模型(LLM)的推理优化技术。内容涵盖LLM推理的基本流程(预填充阶段和解码阶段)、关键挑战(KV缓存管理、内存需求)以及主流优化方法。重点分析了模型并行化技术,包括Pipeline并行、Tensor并行和Sequence并行,详细阐述其工作原理、优势与局限性。Pipeline并行通过垂直分片模型层提高效率,但存在Pipeline气泡问题;Tensor并行水平分割注意力头和MLP层;Sequence并行则针对LayerNorm等操作提出优化方案。文章指出,优化KV
2025-06-22 09:15:45
825
原创 大模型算法面试题,练完通过率98%
这是一份全面的AI大模型学习资源指南,涵盖了大模型技术的多个关键方面。文档首先列出了298道面试题,分为RAG相关(40题)、技术面(17题)、项目面(20题)、算法面(200题)和Transformer面(21题)五大类别。 内容重点分析了RAG(检索增强生成)技术的痛点和优化方向,包括文档切分、垂直领域表现、召回效果、prompt优化等问题。技术部分则涉及GNN、医学问答、多模态等实际应用场景的提问。 资料提供了完整的大模型学习路线,分为七个阶段:从系统设计到提示词工程,从平台应用到知识库开发,再到微调
2025-06-21 22:17:17
820
原创 收藏!11 种大模型对齐与优化算法解析
大模型对齐与优化算法解析:11种关键技术一览 本文系统介绍了11种主流的大语言模型(LLM)对齐与优化算法,涵盖从基础优化到前沿创新的多种技术路径。包括:1)稳定性强的近端策略优化(PPO);2)高效简洁的直接偏好优化(DPO);3)群体比较的组相对策略优化(GRPO);4)灵活性高的解耦剪辑和动态采样策略优化(DAPO);5)基础性的监督微调(SFT);6)经典的基于人类反馈的强化学习(RLHF);7)推理优化的蒙特卡洛树搜索(MCTS);8)智能选择的主动多偏好优化(AMPO);9)自我学习的自我游戏微
2025-06-21 20:57:48
632
原创 我是35岁AI大模型工程师,劝告准备学……
AI大模型工程师的女生!!💜AI大模型工程师因为工资待遇高、实用性强,好就业等优点成为了女生们转行就业的心头好。尤其是现在严峻的就业环境下,学一门技术显得尤为重要AI大模型工程师也成为了很🔥的岗位之
2025-06-20 16:52:44
1000
原创 快速理解热门LLM大语言模型
本文通俗讲解了大语言模型(LLM)的核心概念:LLM本质是文字接龙游戏,通过Transformer的自注意力机制实现上下文理解;Prompt提示词的正确使用方式及其在API中的角色分配;Function calling如何让大模型完成复杂任务。文章用简单例子解释了Transformer的QKV向量计算过程,并介绍了API中的温度控制、多轮对话机制等关键参数的作用。内容兼顾技术原理与实际应用,帮助读者快速建立对大语言模型的基本认知框架。
2025-06-20 16:44:43
634
原创 上海交通大学2024年力作!《动手学大模型》实战教程+PPT分享!
【摘要】上海交通大学推出《动手学大模型》免费课程资源,包含实战教程和完整PPT课件,由张倬胜教授设计,GitHub获2.4K星标。课程聚焦大模型编程实践,涵盖核心概念与行业应用,提供640套行业报告、学习视频及路线图。资源获取方式:扫描二维码备注"上交大大模型PPT"即可领取全套资料,助力AI从业者掌握大模型开发技能。
2025-06-19 19:15:18
906
原创 智能工业时代:工业场景下的 AI 大模型体系架构与应用探索_cosmo-gpt
自工业革命以来,工业生产先后经历了机械化、电气化、自动化、信息化的演进,正从数字化向智能化迈进,人工智能技术是新一轮科技革命和产业变革的重要驱动力量,AI 大模型以其强大的学习计算能力掀开了人工智能通用化的序幕,持续加速产业升级和高质量发展,成为推动我国工业智能化的关键因素和数字经济发展的重要引擎。工业大模型,特指在工业领域设计和应用的、具有大量参数的人工智能模型,它们通过深度学习和海量数据分析,为工业自动化、智能化提供了强大的算法支持和决策辅助。工业 4.0 的浪潮带来了对智能制造前所未有的需求,工业
2025-06-19 19:12:34
1053
原创 一文搞懂大模型的RAG(知识库和知识图谱)
RAG(检索增强生成)技术融合了信息检索与文本生成,通过动态检索外部知识库解决大模型的"幻觉"问题。其核心流程包括检索相关文档、将结果作为上下文输入、生成最终答案。文章详细介绍了RAG的知识库构建方法(文本分块与向量化)和知识图谱应用(实体关系抽取与图谱索引),并提供了Prompt+RAG的实战策略,如多路召回技术和结构化输入设计。为帮助读者深入理解,文章还分享了大模型学习路线和免费资源获取方式,涵盖从系统设计到平台开发的7个学习阶段。
2025-06-19 17:15:19
954
原创 《零基础入门AI大模型:从学习到实战全攻略》每个人都能看懂的大模型
《零基础入门AI大模型:从学习到实战全攻略》摘要 这份大模型学习资源包为不同基础的学习者提供完整成长路径。内容涵盖: 系统化课程体系:从基础概念到微调开发7阶段进阶路线 实战应用场景:包含电商试衣、物流问答等6大行业解决方案 配套学习资料:640份行业报告+200本书籍+100集视频教程 求职辅助工具:面试题库+答题模板+商业化案例集 多模态扩展:包含SD模型文生图等前沿应用 资源包通过理论+实践结合的方式,帮助学习者掌握Fine-tuning、LangChain等核心技术,实现从入门到开发的跨越。现免费提
2025-06-19 17:01:49
730
原创 【MCP揭秘】MCP赋能Agent爆发式增长,Agent进入规模化落地阶段!复合增幅近45.8%!
AI智能体爆发元年:技术变革重塑全球产业格局 AI智能体市场正迎来爆发式增长,2024年市场规模已达54亿美元,预计2030年将突破500亿美元。这一变革由三大核心因素驱动:全球生产效率转型的刚需、大模型技术的重大突破,以及MCP协议赋予的生态互操作性。AI智能体正深度渗透生产全流程,从供应链管理到个性化营销,帮助企业实现降本增效。MCP协议作为关键技术支撑,为AI系统提供了标准化的数据交换网络,使不同规模的企業都能快速接入AI能力。这场技术革命已超越实验室阶段,正重塑全球产业结构,为企业提供弯道超车的新机
2025-06-18 22:35:33
539
原创 一周面了7大模型算法岗,无一例外全过了
【摘要】本文分享了作者成功通过7家大模型算法岗面试的经验。文章详细记录了不同轮次的面试问题,包括算法题(Leetcode原题、Attention实现)、大模型技术(DPO训练、BERT预训练、位置编码、MOE架构)、推理加速、多模态训练、prompt优化等核心知识点。为帮助读者系统学习,作者还提供了完整的AI大模型学习路线图(7个阶段)和免费学习资源包(含书籍、视频、行业报告等),覆盖从基础理论到商业应用的完整知识体系,助力开发者掌握大模型开发与优化技能。建议对大模型岗位感兴趣的开发者收藏参考。
2025-06-18 22:18:39
1216
原创 大模型新动向:LLM+合成数据、LLM+奖励模型、大模型推理、LLM-as-a Judge、安全对齐、长文本
大模型研究前沿:六大热门方向综述 大模型研究领域目前聚焦于六个关键技术方向: LLM+合成数据:通过生成式预训练模型(如GPT-FL框架)解决数据获取难题,在联邦学习中展现显著优势; LLM+奖励模型:REWARDAGENT等新型奖励系统整合人类偏好与可验证信号,有效提升模型安全性和可靠性; 大模型推理优化:VIDEOTREE等自适应表示方法改进长视频理解,层次化结构显著提升推理效率; 长文本处理:OmniKV等创新方法实现450K上下文扩展,突破传统GPU内存限制; LLM-as-a-Judge:大模型评
2025-06-17 11:59:01
840
原创 大模型RAG实战:全面讲解RAG技术原理、实战应用(附PDF书籍)
这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。
2025-06-16 22:40:05
669
原创 LLM不是所有!这几个模型你需要知道!
AI时代涌现出多种模型类型,每种模型都有独特优势和应用场景。大型语言模型(LLM)擅长文本生成但计算成本高;潜在一致性模型(LCM)可实现快速图像生成;语言行动模型(LAM)能连接语言理解和实际任务执行;专家混合模型(MoE)通过动态路由提升效率;视觉语言模型(VLM)处理多模态信息;小型语言模型(SLM)适合边缘设备部署;掩码语言模型(MLM)专注文本理解;分割一切模型(SAM)提供通用图像分割能力。开发者需要根据具体需求选择合适的模型或构建复合AI系统,同时持续学习新兴技术以保持竞争力。
2025-06-16 22:28:21
905
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人