2025年,AI依然站在科技浪潮的最前沿,尤其是大模型(Large Language Models)相关岗位,已经成为“高薪”、“前景好”的代名词。很多人看到别人转行AI后月入两三万,自己也跃跃欲试,但一上手却发现:知识点多如牛毛、资料杂乱无章、根本不知道从哪开始学,最后不是半途而废,就是学了个皮毛,面试都过不了。
其实,大模型并不是那么难学,关键是要有正确的学习顺序和系统化的知识体系。这篇文章我将根据自己的学习经历,以及身边成功转型的朋友的经验,为大家梳理出一套2025最新、最实用的大模型学习路线图,帮助你少走弯路,快速入门甚至进阶,顺利拿下大厂offer!
一、为什么不能乱学?大模型学习常见误区
在正式介绍学习顺序之前,我想先说一下大多数人在学习大模型时容易踩的坑:
- 没有明确目标:只知道“我要学大模型”,但不知道是想做提示工程?还是模型部署?还是训练优化?
- 盲目堆资料:网上随便搜一堆课程、论文、视频,结果越学越混乱。
- 只看不练:光看教程不动手写代码,学完就忘。
- 跳过基础直接上项目:连Transformer结构都没搞清楚就开始搭LangChain应用,根本看不懂原理。
- 缺乏系统性:东学一点Prompt技巧,西学一点RAG理论,知识碎片化严重。
这些问题都会严重影响你的学习效率,甚至让你放弃学习。所以,想要高效掌握大模型,必须有一个清晰的学习顺序。
二、2025最新大模型学习顺序推荐
我把整个学习过程分为四个阶段,每个阶段都有明确的目标和重点内容,循序渐进,层层递进,适合零基础小白也能轻松上手。
第一阶段:了解大模型,打好基础(1~2周)
学习目标:建立对大模型的全面认知,理解其核心原理和应用场景
在这个阶段,你需要完成以下几个方面的学习:
1. 大模型的基本概念
- 什么是大型语言模型(LLM)?
- LLM与传统机器学习模型的区别
- 当前主流大模型有哪些(如ChatGPT、Llama、Qwen、Baichuan、GLM等)
- 大模型的发展历程及趋势
2. 核心原理与关键技术
- Transformer架构详解(Attention机制、位置编码、Layer Normalization等)
- Tokenization 和 Embedding 的作用
- 模型推理流程:从输入到输出是如何工作的
- 上下文长度、温度、Top-k采样等参数的作用
3. 应用场景与行业分析
- 大模型在文本生成、问答系统、客服机器人、编程辅助、教育、医疗等领域的应用
- 各大厂在大模型上的布局和发展方向
- 大模型带来的职业机会和岗位需求(如提示工程师、模型部署工程师、算法工程师等)
📌 建议学习资源:
- 视频课程:DeepLearning.AI《大型语言模型专项课程》
- 博客文章:知乎/掘金/公众号搜索“大模型基础知识”
- 论文阅读:BERT、Transformer、GPT系列论文精读(可选)
✅ 这个阶段的重点是建立整体认知,不需要深入代码实现,但要能讲清楚大模型是什么、怎么工作的、能用来做什么。
第二阶段:掌握核心模块,学会使用大模型(3~6周)
学习目标:掌握大模型的核心工具链,能够独立部署并调用大模型
进入这一阶段后,你就开始真正“动手玩”大模型了。需要掌握以下几个核心技术点:
1. Prompt Engineering(提示工程)
- 如何设计高质量的Prompt提升模型输出质量
- 常见Prompt技巧(Few-shot、Chain-of-Thought、Role Prompting等)
- Prompt模板设计与复用
2. RAG(检索增强生成)
- RAG的基本原理与流程(Retrieval + Generation)
- 如何构建本地知识库(PDF、数据库、网页等)
- 使用FAISS、Chroma、Pinecone等向量数据库进行相似度匹配
3. LangChain 框架
- LangChain 的基本组成(LLM、Prompt Template、Memory、Agent 等)
- 构建简单的问答系统、聊天机器人、数据查询工具
- 结合RAG实现基于知识库的智能问答
4. Agent(代理系统)
- Agent 的基本原理与应用场景
- AutoGPT、BabyAGI、MetaGPT 等开源项目的使用与实践
- 如何构建一个自动化任务执行的AI助手
5. 本地部署与模型推理
- 使用Transformers加载Hugging Face模型(如Llama、Bloom、ChatGLM)
- 使用FastAPI或Gradio搭建本地API服务
- 使用Ollama、Text Generation WebUI等工具快速部署模型
- GPU推理加速与性能优化(CUDA、TensorRT等基础了解)
📌 建议学习资源:
- GitHub开源项目:搜索“LangChain demo”、“RAG tutorial”
- HuggingFace官方文档 + Transformers库实战
- Ollama官网 + Text Generation WebUI文档
- 实战项目:做一个本地PDF问答系统 + 一个基于RAG的知识库问答助手
✅ 这个阶段的关键是动手实践,不要怕报错,多跑几个Demo,逐步熟悉大模型的实际使用方式。
第三阶段:深入训练与优化,提升技术深度(2~3个月)
学习目标:理解大模型的训练机制,掌握微调、评估与优化方法
如果你希望进一步深入技术底层,或者未来从事模型训练、优化等相关工作,这一阶段必不可少。
1. 大模型训练基础
- 预训练 vs 微调的区别
- 数据集准备与清洗(如Alpaca格式、ShareGPT格式)
- LoRA、Adapter、P-Tuning等轻量级微调方法
- 使用PEFT库进行LoRA微调实践
2. 模型评估与调试
- 如何评估模型效果(BLEU、ROUGE、METEOR等指标)
- 定性分析与定量分析结合
- 分析模型输出错误的原因,并进行针对性优化
3. 多模态与扩展应用
- 多模态大模型简介(如CLIP、Flamingo)
- 图像+文本联合处理案例
- 大模型与其他AI技术的融合(如强化学习、图神经网络等)
📌 建议学习资源:
- HuggingFace PEFT 文档
- LoRA论文原文 + 开源项目实战
- DeepSpeed、Accelerate 等分布式训练框架
- 实战项目:用LoRA微调一个Llama模型,使其具备特定领域的回答能力
✅ 这个阶段难度较高,适合有一定Python、PyTorch基础的同学,建议搭配在线课程或社区讨论进行学习。
第四阶段:项目实战,打造作品集(持续进行)
学习目标:综合运用所学知识,完成复杂项目,积累实战经验
无论你是求职还是创业,最终都需要通过项目来证明自己的能力。这个阶段的目标是:
1. 构建完整的AI产品原型
- 用户界面(Web、App、命令行)
- 后端服务(API接口)
- 数据存储与管理
- 模型推理与优化
2. 推荐项目方向
- 智能客服机器人(集成RAG + LangChain)
- 企业知识库问答系统(支持PDF、Word、网页)
- 自动化办公助手(邮件撰写、会议纪要生成)
- AI编程助手(代码补全、文档生成)
- 垂直领域定制模型(如法律、金融、医疗)
3. 托管与展示
- 将项目托管到GitHub,形成个人作品集
- 可视化展示(使用Streamlit、Gradio、React等)
- 撰写项目博客或视频演示,提升影响力
📌 建议学习资源:
- GitHub Trending 项目参考
- B站/YouTube搜索“大模型实战项目”
- LangChain + RAG + FastAPI 综合项目案例
✅ 项目是检验学习成果的最佳方式,也是求职面试中最有说服力的加分项。
三、结语:坚持+系统=成功
大模型并不是遥不可及的技术,只要你有正确的学习顺序、坚定的学习动力和持续的实践精神,完全可以在短时间内掌握这项技能。
记住一句话:“别再乱学大模型了,按照这个顺序学,效率翻倍!”
四、写在最后
如果你觉得这篇文章对你有帮助,欢迎点赞、收藏、转发,让更多人看到!
也可以关注我,我会持续更新大模型相关的学习路线、实战项目、面试题解析等内容,带你一步步从零基础走向精通!
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓