2025别再乱学大模型了,按这个大模型学习顺序学效率翻倍!

2025年,AI依然站在科技浪潮的最前沿,尤其是大模型(Large Language Models)相关岗位,已经成为“高薪”、“前景好”的代名词。很多人看到别人转行AI后月入两三万,自己也跃跃欲试,但一上手却发现:知识点多如牛毛、资料杂乱无章、根本不知道从哪开始学,最后不是半途而废,就是学了个皮毛,面试都过不了。

其实,大模型并不是那么难学,关键是要有正确的学习顺序和系统化的知识体系。这篇文章我将根据自己的学习经历,以及身边成功转型的朋友的经验,为大家梳理出一套2025最新、最实用的大模型学习路线图,帮助你少走弯路,快速入门甚至进阶,顺利拿下大厂offer!


一、为什么不能乱学?大模型学习常见误区

在正式介绍学习顺序之前,我想先说一下大多数人在学习大模型时容易踩的坑:

  • 没有明确目标:只知道“我要学大模型”,但不知道是想做提示工程?还是模型部署?还是训练优化?
  • 盲目堆资料:网上随便搜一堆课程、论文、视频,结果越学越混乱。
  • 只看不练:光看教程不动手写代码,学完就忘。
  • 跳过基础直接上项目:连Transformer结构都没搞清楚就开始搭LangChain应用,根本看不懂原理。
  • 缺乏系统性:东学一点Prompt技巧,西学一点RAG理论,知识碎片化严重。

这些问题都会严重影响你的学习效率,甚至让你放弃学习。所以,想要高效掌握大模型,必须有一个清晰的学习顺序。


二、2025最新大模型学习顺序推荐

我把整个学习过程分为四个阶段,每个阶段都有明确的目标和重点内容,循序渐进,层层递进,适合零基础小白也能轻松上手。

在这里插入图片描述

第一阶段:了解大模型,打好基础(1~2周)

学习目标:建立对大模型的全面认知,理解其核心原理和应用场景

在这个阶段,你需要完成以下几个方面的学习:

1. 大模型的基本概念
  • 什么是大型语言模型(LLM)?
  • LLM与传统机器学习模型的区别
  • 当前主流大模型有哪些(如ChatGPT、Llama、Qwen、Baichuan、GLM等)
  • 大模型的发展历程及趋势
2. 核心原理与关键技术
  • Transformer架构详解(Attention机制、位置编码、Layer Normalization等)
  • Tokenization 和 Embedding 的作用
  • 模型推理流程:从输入到输出是如何工作的
  • 上下文长度、温度、Top-k采样等参数的作用
3. 应用场景与行业分析
  • 大模型在文本生成、问答系统、客服机器人、编程辅助、教育、医疗等领域的应用
  • 各大厂在大模型上的布局和发展方向
  • 大模型带来的职业机会和岗位需求(如提示工程师、模型部署工程师、算法工程师等)

📌 建议学习资源:

  • 视频课程:DeepLearning.AI《大型语言模型专项课程》
  • 博客文章:知乎/掘金/公众号搜索“大模型基础知识”
  • 论文阅读:BERT、Transformer、GPT系列论文精读(可选)

✅ 这个阶段的重点是建立整体认知,不需要深入代码实现,但要能讲清楚大模型是什么、怎么工作的、能用来做什么。


第二阶段:掌握核心模块,学会使用大模型(3~6周)

学习目标:掌握大模型的核心工具链,能够独立部署并调用大模型

进入这一阶段后,你就开始真正“动手玩”大模型了。需要掌握以下几个核心技术点:

1. Prompt Engineering(提示工程)
  • 如何设计高质量的Prompt提升模型输出质量
  • 常见Prompt技巧(Few-shot、Chain-of-Thought、Role Prompting等)
  • Prompt模板设计与复用
2. RAG(检索增强生成)
  • RAG的基本原理与流程(Retrieval + Generation)
  • 如何构建本地知识库(PDF、数据库、网页等)
  • 使用FAISS、Chroma、Pinecone等向量数据库进行相似度匹配
3. LangChain 框架
  • LangChain 的基本组成(LLM、Prompt Template、Memory、Agent 等)
  • 构建简单的问答系统、聊天机器人、数据查询工具
  • 结合RAG实现基于知识库的智能问答
4. Agent(代理系统)
  • Agent 的基本原理与应用场景
  • AutoGPT、BabyAGI、MetaGPT 等开源项目的使用与实践
  • 如何构建一个自动化任务执行的AI助手
5. 本地部署与模型推理
  • 使用Transformers加载Hugging Face模型(如Llama、Bloom、ChatGLM)
  • 使用FastAPI或Gradio搭建本地API服务
  • 使用Ollama、Text Generation WebUI等工具快速部署模型
  • GPU推理加速与性能优化(CUDA、TensorRT等基础了解)

📌 建议学习资源:

  • GitHub开源项目:搜索“LangChain demo”、“RAG tutorial”
  • HuggingFace官方文档 + Transformers库实战
  • Ollama官网 + Text Generation WebUI文档
  • 实战项目:做一个本地PDF问答系统 + 一个基于RAG的知识库问答助手

✅ 这个阶段的关键是动手实践,不要怕报错,多跑几个Demo,逐步熟悉大模型的实际使用方式。


第三阶段:深入训练与优化,提升技术深度(2~3个月)

学习目标:理解大模型的训练机制,掌握微调、评估与优化方法

如果你希望进一步深入技术底层,或者未来从事模型训练、优化等相关工作,这一阶段必不可少。

1. 大模型训练基础
  • 预训练 vs 微调的区别
  • 数据集准备与清洗(如Alpaca格式、ShareGPT格式)
  • LoRA、Adapter、P-Tuning等轻量级微调方法
  • 使用PEFT库进行LoRA微调实践
2. 模型评估与调试
  • 如何评估模型效果(BLEU、ROUGE、METEOR等指标)
  • 定性分析与定量分析结合
  • 分析模型输出错误的原因,并进行针对性优化
3. 多模态与扩展应用
  • 多模态大模型简介(如CLIP、Flamingo)
  • 图像+文本联合处理案例
  • 大模型与其他AI技术的融合(如强化学习、图神经网络等)

📌 建议学习资源:

  • HuggingFace PEFT 文档
  • LoRA论文原文 + 开源项目实战
  • DeepSpeed、Accelerate 等分布式训练框架
  • 实战项目:用LoRA微调一个Llama模型,使其具备特定领域的回答能力

✅ 这个阶段难度较高,适合有一定Python、PyTorch基础的同学,建议搭配在线课程或社区讨论进行学习。


第四阶段:项目实战,打造作品集(持续进行)

学习目标:综合运用所学知识,完成复杂项目,积累实战经验

无论你是求职还是创业,最终都需要通过项目来证明自己的能力。这个阶段的目标是:

1. 构建完整的AI产品原型
  • 用户界面(Web、App、命令行)
  • 后端服务(API接口)
  • 数据存储与管理
  • 模型推理与优化
2. 推荐项目方向
  • 智能客服机器人(集成RAG + LangChain)
  • 企业知识库问答系统(支持PDF、Word、网页)
  • 自动化办公助手(邮件撰写、会议纪要生成)
  • AI编程助手(代码补全、文档生成)
  • 垂直领域定制模型(如法律、金融、医疗)
3. 托管与展示
  • 将项目托管到GitHub,形成个人作品集
  • 可视化展示(使用Streamlit、Gradio、React等)
  • 撰写项目博客或视频演示,提升影响力

📌 建议学习资源:

  • GitHub Trending 项目参考
  • B站/YouTube搜索“大模型实战项目”
  • LangChain + RAG + FastAPI 综合项目案例

✅ 项目是检验学习成果的最佳方式,也是求职面试中最有说服力的加分项。


三、结语:坚持+系统=成功

大模型并不是遥不可及的技术,只要你有正确的学习顺序、坚定的学习动力和持续的实践精神,完全可以在短时间内掌握这项技能。

记住一句话:“别再乱学大模型了,按照这个顺序学,效率翻倍!”


四、写在最后

如果你觉得这篇文章对你有帮助,欢迎点赞、收藏、转发,让更多人看到!

也可以关注我,我会持续更新大模型相关的学习路线、实战项目、面试题解析等内容,带你一步步从零基础走向精通!

如何学习AI大模型?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高

那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓

👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈

学习路线

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

在这里插入图片描述

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

### 大模型基础入门教程和资源 对于希望了解大模型基础知识的初者而言,存在多种优质的资源可供利用。 #### 1. 综合性学习资料包 一份全面覆盖大型语言模型(LLM)的学习材料被整理成册,其中不仅包含了关于LLM的相关书籍、详尽的行业分析报告共六百四十份,还配有教视频以及清晰的学习路径指南等。这些内容能够帮助新手建立系统的理论框架并掌握实际操作技能[^1]。 #### 2. Keras简介及其应用价值 Keras作为一个高层次的API接口,在简化深度学习开发流程方面表现出色。其设计哲强调简单性和模块化组合,使得即使是刚接触该领域的新手也能迅速上手创建自己的神经网络结构。更重要的是,由于Keras兼容多个后端引擎如TensorFlow等,这为后续深入研究提供了极大的灵活性和支持[^2]。 #### 3. 动手实践向导——《动手大模型Dive into LLMs》 由GitHub社区维护的一套面向实战型人才培养而编写的教材,《动手大模型Dive into LLMs》,旨在引导生通过具体的案例练习来加深理解,并鼓励探索更多前沿话题。这套教程起源于上海交通大开设的人工智能安全技术课程扩展部分,因此具有较高的术权威性和实用性[^3]。 #### 4. 初级AI开发者成长计划-AI For Beginners 该项目致力于打造一个开放共享的知识平台,围绕着几个核心开源工具展开讨论,比如用于构建高效数据流水线的TensorFlow;擅长处理复杂梯度计算场景下的PyTorch;提供传统机器学习方法论指导作用明显的Scikit-Learn;还有专攻于NLP任务解决之道的HuggingFace Transformers等等。上述提到的技术栈几乎涵盖了当今最热门的研究方向和技术趋势,非常适合想要全方位提升自我的新人加入学习行列[^4]。 ```python import tensorflow as tf from transformers import pipeline # 使用Transformers库加载预训练的情感分类器 classifier = pipeline('sentiment-analysis') result = classifier("We are very happy to show you the Transformer library.") print(result) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值