热门话题解析:pytest测试用例顺序问题解决方案!_为什么在unitest下使用pytest

先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7

深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年最新软件测试全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
img
img
img
img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以添加V获取:vip1024b (备注软件测试)
img

正文

def test_a():
print(“test_a”)

def test_2():
print(“test_2”)

def test_1():
print(“test_1”)

if name == ‘main’:
pytest.main()

执行顺序如下:

自定义执行顺序

pytest 框架支持自定义测试用例的执行顺序,需要安装pytest-ordering插件。

安装

pip install pytest-ordering

使用

需要使用 @pytest.mark.run(),代码如下:

import pytest

class TestOrder:

def test_e(self):
print(“test_e”)

def test_4(self):
print(“test_4”)

def test_b():
print(“test_a”)

@pytest.mark.run(order=2)
def test_a():
print(“test_a”)

@pytest.mark.run(order=1)
def test_2():
print(“test_2”)

def test_1():
print(“test_1”)

if name == ‘main’:
pytest.main()

执行顺序如下:

在测试模块中,先执行被@pytest.mark.run() 标记的测试方法/测试函数,再按默认顺序执行其他的。

总结

虽然 pytest 可以自定义测试用例执行顺序,但是实际测试用例设计的过程中,不应该让用例的执行有先后顺序,即任意单独的测试用例都是独立的完整的功能点的校验,不对其他用例有依赖。

最后感谢每一个认真阅读我文章的人,看着粉丝一路的上涨和关注,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走!

网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。

需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
img

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
1713232680019)]

一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!

<think>嗯,用户想知道如何区分一个Python项目使用的是pytest还是unittest框架。首先,我需要回想一下这两个框架的特点和区别。 首先,unittest是Python自带的测试框架,属于标准库的一部分,所以不需要额外安装。而pytest是一个第三方库,需要单独安装。所以,检查项目的依赖文件,比如requirements.txt或者setup.py,里面如果有pytest的条目,那很可能项目用了pytest。不过也有可能项目同时用了两个,或者没有显式列出依赖,这时候需要进一步分析。 接下来看测试文件的命名和结构。unittest通常要求测试类继承unittest.TestCase,测试方法以test_开头。而pytest虽然也兼容这种写法,但更灵活,允许函数式的测试,只要函数名以test开头就行。所以,如果测试用例是类中的方法,并且有继承TestCase,可能是unittest;如果是独立的函数,更可能是pytest。 然后看断言的使用方式。unittest需要用到self.assertXXX这样的方法,比如self.assertEqual(a, b)。而pytest可以直接用Python的assert语句,比如assert a == b。所以,查看测试代码中的断言写法,如果有很多self.assertXXX,可能偏向unittest;如果直接用assert,可能用了pytest。 另外,测试的运行方式也不同。unittest通常用python -m unittest discover来运行测试,或者在IDE中配置测试运行器。而pytest则是用pytest命令运行,并且支持更多的命令行选项,比如-v显示详细信息,--cov生成覆盖率报告等。所以,查看项目中的脚本或者文档中的运行命令,如果有pytest命令,那可能用的是pytest。 配置文件和插件也是一个线索。pytest通常会用到pytest.ini文件来配置选项,或者使用conftest.py进行插件和钩子的设置。而unittest可能依赖传统的测试发现机制,或者使用setuptools的配置。所以,检查项目根目录下是否有这些配置文件。 另外,测试用例的发现规则不同。unittest默认查找test*.py的模式,而pytest查找test_*.py和*_test.py的文件。所以,测试文件的命名如果符合test_*.py,可能两者都适用,但结合其他因素可以进一步判断。 再看是否有使用特定的插件或功能。比如pytest支持参数化测试(@pytest.mark.parametrize),而unittest需要使用subTest或者第三方扩展。如果测试代码中有使用parametrize装饰器,那显然是pytest。还有pytest特有的功能比如fixture,如果测试中有@pytest.fixture装饰器,那肯定用了pytest。 最后,检查是否有特定的导入语句。比如unittest会导入import unittest,而pytest可能导入import pytest。不过有时候项目可能同时导入两者,特别是迁移过程中,但主要看测试用例的结构和运行方式。 总结下来,可以通过依赖文件、测试代码结构、断言方式、运行命令、配置文件、插件使用等多个方面来判断。用户可能需要逐一检查这些点来确定项目使用的是哪个框架。</think>### 如何判断Python项目使用的是pytest还是unittest框架? 可以通过以下步骤区分项目中使用的测试框架: --- #### **1. 检查依赖文件** - **`requirements.txt`或`setup.py`** 若存在`pytest`依赖项,则可能使用pytest;若没有,可能使用unittest(因其是Python标准库,无需额外安装)。 例如: ```python # requirements.txt pytest>=7.0.0 # 明确使用pytest[^4] ``` --- #### **2. 分析测试代码结构** - **测试类继承关系** - **unittest**:测试类需继承`unittest.TestCase`,例如: ```python import unittest class TestMath(unittest.TestCase): # 继承TestCase[^2] def test_add(self): self.assertEqual(1+1, 2) ``` - **pytest**:无需继承特定类,可直接编写函数式测试: ```python def test_add(): assert 1 + 1 == 2 # 直接使用assert[^4] ``` - **断言方式** - **unittest**:必须使用`self.assertXxx()`方法(如`self.assertEqual()`)[^2]。 - **pytest**:支持原生`assert`语句,语法更简洁。 --- #### **3. 查看测试运行命令** - **unittest**:通常通过`python -m unittest discover`或IDE内置工具运行。 - **pytest**:使用`pytest`命令运行,支持丰富参数(如`pytest -v`)[^3]。 --- #### **4. 检查配置文件** - **pytest**:可能包含`pytest.ini`或`conftest.py`文件,用于配置插件、钩子等。 - **unittest**:一般无特殊配置文件,依赖标准库行为。 --- #### **5. 测试文件命名规则** - **unittest**:默认查找`test*.py`文件。 - **pytest**:支持`test_*.py`和`*_test.py`两种模式[^3]。 --- #### **6. 高级功能对比** - **参数化测试** - **unittest**:需手动实现或使用`subTest`。 - **pytest**:通过`@pytest.mark.parametrize`装饰器实现参数化[^5]。 ```python import pytest @pytest.mark.parametrize("a,b,expected", [(1,2,3), (4,5,9)]) def test_add(a, b, expected): assert a + b == expected ``` - **插件生态** **pytest**拥有丰富的第三方插件(如`pytest-cov`、`pytest-rerunfailures`),而unittest插件较少。 --- ### 总结判断依据 | **特征** | **unittest** | **pytest** | |-------------------|---------------------------------------|--------------------------------------| | 继承关系 | 必须继承`unittest.TestCase` | 无需继承 | | 断言方式 | `self.assertXxx()` | 原生`assert` | | 运行命令 | `python -m unittest` | `pytest` | | 测试文件命名 | `test*.py` | `test_*.py`或`*_test.py` | | 高级功能 | 功能有限,依赖标准库 | 支持参数化、Fixture、插件扩展等[^4] | --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值