先自我介绍一下,小编浙江大学毕业,去过华为、字节跳动等大厂,目前阿里P7
深知大多数程序员,想要提升技能,往往是自己摸索成长,但自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!
因此收集整理了一份《2024年最新软件测试全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友。
既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上软件测试知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
如果你需要这些资料,可以添加V获取:vip1024b (备注软件测试)
正文
C: 用来控制正则化程度的超参数
- n
:
n:
n: 方程中特征的总数,也是方程中参数的总数
- j
:
j:
j: 代表每个参数 ( 在这里,j要大于等于1,是因为我们的参数向量
θ
\theta
θ中,第一个参数是
θ
0
\theta_0
θ0,是我们的截距,它通常是不参与正则化的。)
在一些书和博客上可能会看见下面这种写法:
J
(
θ
)
L
1
=
J
(
θ
)
1
2
b
2
∑
j
∣
θ
j
∣
J(\theta)_{L1}=J(\theta)+\frac{1}{2b^2}\sum_{j}|\theta_j|
J(θ)L1=J(θ)+2b21j∑∣θj∣
J
(
θ
)
L
2
=
J
(
θ
)
θ
T
θ
2
σ
2
J(\theta)_{L2}=J(\theta)+\frac{\thetaT\theta}{2\sigma2}
J(θ)L2=J(θ)+2σ2θTθ
这两种式子的本质是一样的,不过在大多数教材和博客中,常数项是乘以正则项,通过调控正则项来调节对模型的惩罚。而sklearn当中,常数项C是在损失函数的前面,通过调控损失函数本身的大小,来调节对模型的惩罚。
L1正则化和L2正则化虽然都可以控制过拟合,但它们的效果并不相同。当正则化强度逐渐增大(即C逐渐变小),参数
θ
\theta
θ 的取值会逐渐变小,但L1正则化会将参数压缩为0,L2正则化只会让参数尽量小,不会取到0。
- L1正则化在逐渐加强的过程中
携带信息量小的、对模型贡献不大的特征的参数,会比携带大量信息的、对模型有巨大贡献的特征的参数更快地变成0,所以L1正则化本质是一个特征选择的过程,掌管了参数的“稀疏性”。L1正则化越强,参数向量中就越多的参数为0,参数就越稀疏,选出来的特征就越少,以此来防止过拟合。因此,如果特征量很大,数据维度很高,我们会倾向于使用L1正则化。由于L1正则化的这个性质,逻辑回归的特征选择可以由Embedded嵌入法来完成。 - L2正则化在加强的过程中
会尽量让每个特征对模型都有一些小的贡献,但携带信息少,对模型贡献不大的特征的参数会非常接近于0。通常来说,如果我们的主要目的只是为了防止过拟合,选择L2正则化就足够了。但是如果选择L2正则化后还是过拟合,模型在未知数据集上的效果表现很差,就可以考虑L1正则化。
而两种正则化下C的取值,都可以通过学习曲线来进行调整。
下面建立两个逻辑回归,来看一下L1正则化和L2正则化:
1.导入库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.datasets import load_breast_cancer #乳腺癌数据集
from sklearn.linear_model import LogisticRegression as LR #逻辑回归
from sklearn.model_selection import train_test_split #划分数据集
from sklearn.metrics import accuracy_score # 预测值和真实值之间的差距,就是准确率,评分
2. 导入数据
data = load_breast_cancer()
x = data.data
y = data.target
x.shape
(569, 30)
3. 建立L1,L2两个正则化的实例化并训练
#solver='liblinear’和max_iter=1000在下面详细讲解
lrl1 = LR(penalty=‘l1’,solver=‘liblinear’,C=0.5,max_iter=1000)
lrl2 = LR(penalty=‘l2’,solver=‘liblinear’,C=0.5,max_iter=1000)
lrl1.fit(x,y)
lrl2.fit(x,y)
4. 逻辑回归的重要属性coef_:查看每个特征所对应参数
- L1正则化:
lrl1.coef_
找出特征的参数不为0的
lrl1.coef_ != 0
特征参数不为0的个数
(lrl1.coef_ != 0).sum()
10
- L2正则化
lrl2.coef_
可以观察出,当我们选择L1正则化的时候,许多特征的参数都被设置为了0,这些特征在真正建模的时候,就不会出现在我们的模型当中了,而L2正则化则是对所有的特征都给出了参数。
5. 使用学习曲线查看
l1 = []
l2 = []
l1test = []
l2test = []
xtrain, xtest, ytrain, ytest = train_test_split(x,y,test_size=0.3,random_state=500)
for i in np.linspace(0.05,1,19):
lrl1 = LR(penalty=‘l1’,solver=‘liblinear’,C=i,max_iter=1000)
lrl2 = LR(penalty=‘l2’,solver=‘liblinear’,C=i,max_iter=1000)
#accuracy_score就是获得评分
#理解成将预测出的y和原本的y进行一个对比评分
lrl1 = lrl1.fit(xtrain,ytrain)
l1.append(accuracy_score(lrl1.predict(xtrain),ytrain))
l1test.append(accuracy_score(lrl1.predict(xtest),ytest))
lrl2 = lrl2.fit(xtrain,ytrain)
l2.append(accuracy_score(lrl2.predict(xtrain),ytrain))
l2test.append(accuracy_score(lrl2.predict(xtest),ytest))
graph = [l1,l2,l1test,l2test]
color = [‘green’,‘black’,‘red’,‘gray’]
label = [‘L1’,‘L2’,‘L1test’,‘L2test’]
plt.figure(figsize=[20,5])
for i in range(len(graph)):
plt.plot(np.linspace(0.05,1,19),graph[i],color[i],label=label[i])
plt.legend(loc=4)#图例的位置在哪里?4表示,右下角
plt.show()
随着C的逐渐变大,正则化的强度越来越小,模型在训练集和测试集上的表现都呈上升趋势,对于L1直到C=0.8左右,训练集上的表现依然在走高,但模型在未知数据集上的表现开始不变,这时候就是容易出现了过拟合,对于L2,应选择C=0.2左右。
在实际使用时,基本就默认使用l2正则化,如果感觉到模型的效果不好,那就换L1试试看。
2.2 逻辑回归中的特征工程
当特征的数量很多的时候,我们出于业务考虑,也出于计算量的考虑,希望对逻辑回归进行特征选择来降维。比如,在判断一个人是否会患乳腺癌的时候,医生如果看5~8个指标来确诊,会比需要看30个指标来确诊容易得多。
2.2.1 业务选择
说到降维和特征选择,首先要想到的是利用自己的业务能力进行选择,肉眼可见明显和标签有关的特征就是需要留下的。当然,如果我们并不了解业务,或者有成千上万的特征,那我们也可以使用算法来帮助我们。或者,可以让算法先帮助我们筛选过一遍特征,然后在少量的特征中,我们再根据业务常识来选择更少量的特征。
2.2.2 PCA和SVD一般不用
说到降维,我们首先想到的是之前提过的高效降维算法,PCA和SVD,遗憾的是,这两种方法大多数时候不适用于逻辑回归。逻辑回归是由线性回归演变而来,线性回归的一个核心目的是通过求解参数来探究特征X与标签y之间的关系,而逻辑回归也传承了这个性质,我们常常希望通过逻辑回归的结果,来判断什么样的特征与分类结果相关,因此我们希望保留特征的原貌。PCA和SVD的降维结果是不可解释的,因此一旦降维后,我们就无法解释特征和标签之间的关系了。当然,在不需要探究特征与标签之间关系的线性数据上,降维算法PCA和SVD也是可以使用的。
2.2.3 可以使用统计方法(非必要)
既然降维算法不能使用,我们要用的就是特征选择方法。逻辑回归对数据的要求低于线性回归,由于我们不是使用最小二乘法来求解,所以逻辑回归对数据的总体分布和方差没有要求,也不需要排除特征之间的共线性,但如果我们确实希望使用一些统计方法,比如方差,卡方,互信息等方法来做特征选择,也并没有问题。过滤法中所有的方法,都可以用在逻辑回归上。
统计学的思路是一种“先验”的思路,不管做什么都要先”检验“,先”满足条件“,事后也要各种”检验“,以确保各种数学假设被满足,不然的话,理论上就无法得出好结果。而机器学习是一种”后验“的思路,不管三七二十一,先让模型跑一跑,效果不好再想办法,如果模型效果好,不在意什么共线性,残差不满足正态分布,没有哑变量之类的细节,模型效果好大过天!
2.2.4 高效的嵌入法embedded(嵌入法详细看特征选择中的嵌入法)
更有效的方法,毫无疑问会是我们的embedded嵌入法。我们已经说明了,由于L1正则化会使得部分特征对应的参数为0,因此L1正则化可以用来做特征选择,结合嵌入法的模块SelectFromModel,我们可以很容易就筛选出让模型十分高效的特征。注意,此时我们的目的是,尽量保留原数据上的信息,让模型在降维后的数据上的拟合效果保持优秀,因此我们不考虑训练集测试集的问题,把所有的数据都放入模型进行降维。
以乳腺癌数据集为例:
1.导入包
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from sklearn.linear_model import LogisticRegression as LR # 逻辑回归
from sklearn.model_selection import cross_val_score #交叉验证
from sklearn.datasets import load_breast_cancer #乳腺癌数据集
from sklearn.feature_selection import SelectFromModel #嵌入法特征选择
2. 数据的导入
data = load_breast_cancer()
x = data.data
y = data.target
x.shape
(569, 30)
3. 使用逻辑回归进行评分(默认是l2正则化)
C使用的是上面2.1.5的得出的结论,0.2
LR_ = LR(solver=‘liblinear’,C=0.2,random_state=500)
cross_val_score(LR_,x,y,cv=10).mean()
4. 使用嵌入法特征选择
#norm_order=1说明使用的是L1范式,模型会删除在L1范式下面无效的特征
x_embedded = SelectFromModel(LR_,norm_order=1).fit_transform(x,y)
x_embedded.shape
(569, 10)
cross_val_score(LR_,x_embedded,y,cv=10).mean()
可以看出,虽然分数下降了一点,但是特征还保留了10个,删除了20个特征,如果我们要求不高,在这里其实就可以停下了。但是,能否让模型的拟合效果更好呢?在这里,有两种调整方式:
- 调节SelectFromModel这个类中的参数threshold
这是嵌入法的阈值,表示删除所有参数的绝对值低于这个阈值的特征。现在threshold默认为None,所以SelectFromModel只根据L1正则化的结果来选择了特征,即选择了所有L1正则化后参数不为0的特征。
我们此时,只要调整threshold的值(画出threshold的学习曲线),就可以观察不同的threshold下模型的效果如何变化。一旦调整threshold,就不是在使用L1正则化选择特征,而是使用模型的属性.coef_中生成的各个特征的系数来选择。coef_虽然返回的是特征的系数,但是系数的大小和决策树中的feature_ importances_以及降维算法中的可解释性方差explained_vairance_概念相似,其实都是衡量特征的重要程度和贡献度的,因此SelectFromModel中的参数threshold可以设置为coef_的阈值,即可以剔除系数小于threshold中输入的数字的所有特征
#分别储存没使用嵌入法特征选择的x和使用嵌入法特征选择后的x
fullx = []
fsx = []
threshold = np.linspace(0,abs(LR_.fit(x,y).coef_).max(),20)
for i in threshold:
x_embedded = SelectFromModel(LR_,threshold=i).fit_transform(x,y)
#将未特征选择和进行特征选择的x,使用交叉验证得出评分
fullx.append(cross_val_score(LR_,x,y,cv=10).mean())
fsx.append(cross_val_score(LR_,x_embedded,y,cv=10).mean())
#输出threshold和其对应的剩余特征个数
print(i,x_embedded.shape[1])
plt.figure(figsize=[20,5])
plt.plot(threshold,fullx,label=‘full’)
plt.plot(threshold,fsx,label=‘feature selection’)
plt.xticks(threshold)
plt.legend()
plt.show()
当threshold越来越大,被删除的特征越来越多,模型的效果也越来越差,可以看出,保存18个特征模型效果还可以,接下来进行学习曲线的优化
fsx = []
threshold = np.linspace(0,0.052,20)
for i in threshold:
x_embedded = SelectFromModel(LR_,threshold=i).fit_transform(x,y)
fsx.append(cross_val_score(LR_,x_embedded,y,cv=10).mean())
print(i,x_embedded.shape[1])
plt.figure(figsize=[20,5])
plt.plot(threshold,fsx)
plt.xticks(threshold)
plt.show()
如果要保证模型的效果比降维前更好,我们需要保留28个特征,这对于现实情况来说,是一种无效的降维:需要30个指标来判断病情,和需要25个指标来判断病情,对医生来说区别不大。
- 第二种调整方法,是调逻辑回归的类LR_,通过画C的学习曲线来实现:
fullx = []
fsx = []
c = np.arange(0.01,10.01,0.5)
for i in c:
LR_ = LR(solver=‘liblinear’,C=i,random_state=500)
#使用没用嵌入法降维的x
fullx.append(cross_val_score(LR_,x,y,cv=10).mean())
#使用嵌入法降维
x_embedded = SelectFromModel(LR_,norm_order=1).fit_transform(x,y)
fsx.append(cross_val_score(LR_,x_embedded,y,cv=10).mean())
#得出最高的评分及相应的C值
print(max(fsx),c[fsx.index(max(fsx))])
plt.figure(figsize=[20,5])
plt.plot(c,fullx,label=‘full’)
plt.plot(c,fsx,label=‘feature selection’)
plt.legend()
plt.show()
通过结果观察,在7.01左右取得最高,进一步优化学习曲线:
fullx = []
fsx = []
c = np.arange(6.05,7.05,0.005)
for i in c:
LR_ = LR(solver=‘liblinear’,C=i,random_state=500)
#使用没用嵌入法降维的x
fullx.append(cross_val_score(LR_,x,y,cv=10).mean())
#使用嵌入法降维,使用L1范式来进行特征选择
x_embedded = SelectFromModel(LR_,norm_order=1).fit_transform(x,y)
fsx.append(cross_val_score(LR_,x_embedded,y,cv=10).mean())
#得出最高的评分及相应的C值
print(max(fsx),c[fsx.index(max(fsx))])
plt.figure(figsize=[20,5])
plt.plot(c,fullx,label=‘full’)
plt.plot(c,fsx,label=‘feature selection’)
plt.legend()
plt.show()
可以观察出,在C=6.06999999时评分为最高
5. 验证模型效果
- 降维之前
LR_ = LR(solver=‘liblinear’,C=6.069999999999999,random_state=500)
cross_val_score(LR_,x,y,cv=10).mean()
- 降维之后
x_embedded = SelectFromModel(LR_,norm_order=1).fit_transform(x,y)
cross_val_score(LR_,x_embedded,y,cv=10).mean()
- 降维之后的特征数量
x_embedded.shape
这样我们就实现了在特征选择的前提下,保持模型拟合的高效,现在,如果有一位医生可以来为我们指点迷津,看看剩下的这些特征中,有哪些是对针对病情来说特别重要的,也许我们还可以继续降维。当然,除了嵌入法,系数累加法或者包装法也是可以使用的
2.2.5 比较麻烦的系数累加法
系数累加法的原理非常简单。在PCA中,我们通过绘制累积可解释方差贡献率曲线来选择超参数,在逻辑回归中我们可以使用系数coef_来这样做,并且我们选择特征个数的逻辑也是类似的:找出曲线由锐利变平滑的转折点,转折点之前被累加的特征都是我们需要的,转折点之后的我们都不需要。不过这种方法相对比较麻烦,因为我们要先对特征系数进行从大到小的排序,还要确保我们知道排序后的每个系数对应的原始特征的位置,才能够正确找出那些重要的特征。如果要使用这样的方法,不如直接使用嵌入法来得方便。
2.2.6 简单快速的包装法
相对的,包装法可以直接设定我们需要的特征个数,逻辑回归在现实中运用时,可能会有”需要5~8个变量”这种需求,包装法此时就非常方便了。不过逻辑回归的包装法的使用和其他算法一样,并不具有特别之处,因此在这里就不在赘述,包装法具体参考特征选择中的包装法。
3. 梯度下降:重要参数max_iter
逻辑回归的数学目的是求解能够让模型最优化,拟合程度最好的参数
θ
\theta
θ 的值,即求解能够让损失函数
J
(
θ
)
J(\theta)
J(θ) 最小化的值。对于二元逻辑回归来说,有多种方法可以用来求解参数 ,最常见的有梯度下降法(Gradient Descent),坐标下降法(Coordinate Descent),牛顿法(Newton-Raphson method)等,其中又以梯度下降法最为著名。这些计算在执行的任务其实是类似的。
3.1 梯度下降求解逻辑回归
我们以最著名也最常用的梯度下降法为例,来看看逻辑回归的参数求解过程究竟实在做什么。现在有一个带两个特征并且没有截距的逻辑回归
y
(
x
1
,
x
2
)
y(x_1,x_2)
y(x1,x2),两个特征所对应的参数分别为
[
θ
1
,
θ
2
]
[\theta_1,\theta_2]
[θ1,θ2]。下面这个华丽的平面就是我们的损失函数
J
(
θ
1
,
θ
2
)
J(\theta_1,\theta_2)
J(θ1,θ2) 在以
θ
1
,
θ
2
\theta_1,\theta_2
θ1,θ2 和 J为坐标轴的三维立体坐标系上的图像。现在,我们寻求的是损失函数的最小值,也就是图像的最低点。
在这个图像上随机放一个小球,当松手的时候,这个小球就会顺着这个华丽的平面滚落,直到滚到深蓝色的区域——损失函数的最低点。为了严格监控这个小球的行为,我让小球每次滚动的距离有限,不让他一次性滚到最低点,并且最多只允许它滚动100步,还要记下它每次滚动的方向,直到它滚到图像上的最低点。
可以想到,小球从高处滑落,在深蓝色的区域中来回震荡,最终停留在了图像凹陷处的某个点上。非常明显,我们可以观察到几个现象:
首先,小球并不是一开始就直向着最低点去的,它先一口气冲到了蓝色区域边缘,后来又折回来,我们已经规定了小球是多次滚动,所以可见,小球每次滚动的方向都是不同的。
另外,小球在进入深蓝色区域后,并没有直接找到某个点,而是在深蓝色区域中来回震荡了数次才停下。这有两种可能:1) 小球已经滚到了图像的最低点,所以停下了,2) 由于我设定的步数限制,小球还没有找到最低点,但也只好在100步的时候停下了。也就是说,小球不一定滚到了图像的最低处。
但无论如何,小球停下的就是我们在现有状况下可以获得的唯一点了。如果我们够幸运,这个点就是图像的最低点,那我们只要找到这个点的对应坐标
(
θ
1
∗
,
θ
2
∗
,
J
m
i
n
)
(\theta_1*,\theta_2*,J_{min})
(θ1∗,θ2∗,Jmin),就可以获取能够让损失函数最小的参数取值
[
θ
1
∗
,
θ
2
∗
]
[\theta_1*,\theta_2*]
[θ1∗,θ2∗]了。如此,梯度下降的过程就已经完成。
在这个过程中,**小球其实就是一组组的坐标点
(
θ
1
,
θ
2
,
J
)
(\theta_1,\theta_2,J)
(θ1,θ2,J) ;小球每次滚动的方向就是那一个坐标点的梯度向量的方向**,因为每滚动一步,小球所在的位置都发生变化,坐标点和坐标点对应的梯度向量都发生了变化,所以每次滚动的方向也都不一样;人为设置的100次滚动限制,就是sklearn中逻辑回归的参数max_iter,代表着能走的最大步数,即最大迭代次数。
**所以梯度下降,其实就是在众多
[
θ
1
,
θ
2
]
[\theta_1,\theta_2]
[θ1,θ2] 可能的值中遍历,一次次求解坐标点的梯度向量,不断让损失函数的取值
J
J
J逐渐逼近最小值,再返回这个最小值对应的参数取值
[
θ
1
∗
,
θ
2
∗
]
[\theta_1*,\theta_2*]
[θ1∗,θ2∗] 的过程。**
3.2 梯度下降的概念
那梯度究竟如何定义呢?在多元函数上对各个自变量求∂偏导数,把求得的各个自变量的偏导数以向量的形式写出来,就是梯度。比如损失函数
J
(
θ
1
,
θ
2
)
J(\theta_1,\theta_2)
J(θ1,θ2),其自变量是逻辑回归预测函数
y
θ
(
x
)
y_{\theta}(x)
yθ(x)的参数
θ
1
,
θ
2
\theta_1,\theta_2
θ1,θ2 ,在损失函数上对
θ
1
,
θ
2
\theta_1,\theta_2
θ1,θ2求偏导数,**求得的梯度向量
d
d
d就是
[
∂
J
∂
θ
1
,
∂
J
∂
θ
2
]
T
[\frac{\partial J}{\partial \theta_1},\frac{\partial J}{\partial \theta_2}]^T
[∂θ1∂J,∂θ2∂J]T**,简称
g
r
a
d
J
(
θ
1
,
θ
2
)
grad J(\theta_1,\theta_2)
gradJ(θ1,θ2)或者
∇
J
(
θ
1
,
θ
2
)
\nabla J(\theta_1,\theta_2)
∇J(θ1,θ2) 。在
θ
1
,
θ
2
\theta_1,\theta_2
θ1,θ2和
J
J
J的取值构成的坐标系上,点
(
θ
1
∗
,
θ
2
∗
,
J
)
(\theta_1*,\theta_2*,J)
(θ1∗,θ2∗,J)具体的梯度向量就是
[
∂
J
∂
θ
1
∗
,
∂
J
∂
θ
2
∗
]
T
[\frac{\partial J}{\partial \theta_1^*},\frac{\partial J}{\partial \theta_2*}]T
[∂θ1∗∂J,∂θ2∗∂J]T,或者
∇
J
(
θ
1
∗
,
θ
2
∗
)
\nabla J(\theta_1*,\theta_2*)
∇J(θ1∗,θ2∗)。如果是3个参数的梯度向量,就是
[
∂
J
∂
θ
1
,
∂
J
∂
θ
2
,
∂
J
∂
θ
3
]
T
[\frac{\partial J}{\partial \theta_1},\frac{\partial J}{\partial\theta_2},\frac{\partial J}{\partial \theta_3}]^T
[∂θ1∂J,∂θ2∂J,∂θ3∂J]T,以此类推。
注意:
求解梯度,是在损失函数
J
(
θ
1
,
θ
2
)
J(\theta_1,\theta_2)
J(θ1,θ2)上对损失函数自身的自变量
θ
1
\theta_1
θ1和
θ
2
\theta_2
θ2 求偏导,而这两个自变量,刚好是逻辑回归的预测函数
y
(
x
)
=
1
1
e
−
θ
T
x
y(x)=\frac{1}{1+e{-\thetaTx}}
y(x)=1+e−θTx1的参数。
那梯度有什么含义呢?
梯度是一个向量,因此它有大小也有方向。它的大小,就是偏导数组成的向量的大小,又叫做向量模,记作
d
d
d 。它的方向,几何上来说,就是损失函数
J
(
θ
)
J(\theta)
J(θ)的值增加最快的方向,就是小球每次滚动的方向的反方向。**只要沿着梯度向量的反方向移动坐标,损失函数
J
(
θ
)
J(\theta)
J(θ) 的取值就会减少得最快,也就最容易找到损失函数的最小值。**
在逻辑回归中,损失函数是:
J
(
θ
)
=
−
∑
i
=
1
m
(
y
i
∗
log
(
y
θ
(
x
i
)
)
(
1
−
y
i
)
∗
log
(
1
−
y
θ
(
x
i
)
)
)
J(\theta)=-\sum_{i=1}^{m}(y_i*\log(y_{\theta}(x_i))+(1-y_i)*\log(1-y_{\theta}(x_i)))
J(θ)=−i=1∑m(yi∗log(yθ(xi))+(1−yi)∗log(1−yθ(xi)))
我们对这个函数上的自变量
θ
\theta
θ 求偏导,就可以得到**梯度向量在第
j
j
j组
θ
\theta
θ的坐标点上的表示**形式(详细推导过程看梯度向量的推导):
∂
J
(
θ
)
∂
θ
j
=
d
j
=
∑
i
=
1
m
(
x
i
×
(
y
θ
(
x
i
)
−
y
i
)
)
\frac{\partial J(\theta)}{\partial \theta_j}=d_j=\sum_{i=1}^{m}(x_i×(y_{\theta}(x_i)-y_i))
∂θj∂J(θ)=dj=i=1∑m(xi×(yθ(xi)−yi))
在这个公式下,**只要给定一组
θ
\theta
θ的取值
θ
j
\theta_j
θj ,再带入特征矩阵
x
x
x,就可以求得这一组
θ
\theta
θ 取值下的预测结果
y
θ
(
x
i
)
y_{\theta}(x_i)
yθ(xi),结合真实标签向量
y
i
y_i
yi ,就可以获得这一组
θ
j
\theta_j
θj取值下的梯度向量,其大小表示为
d
j
d_j
dj**。之前说过,我们的目的是在可能的
θ
\theta
θ取值上进行遍历,一次次计算梯度向量,并在梯度向量的反方向上让损失函数
J
J
J下降至最小值。**在这个过程中,我们的
θ
\theta
θ 和梯度向量的大小
d
d
d 都会不断改变,而我们遍历
θ
\theta
θ 的过程可以描述为**:
(梯度下降表示)
θ
j
1
=
θ
j
−
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!
动的方向的反方向。**只要沿着梯度向量的反方向移动坐标,损失函数
J
(
θ
)
J(\theta)
J(θ) 的取值就会减少得最快,也就最容易找到损失函数的最小值。**
在逻辑回归中,损失函数是:
J
(
θ
)
=
−
∑
i
=
1
m
(
y
i
∗
log
(
y
θ
(
x
i
)
)
(
1
−
y
i
)
∗
log
(
1
−
y
θ
(
x
i
)
)
)
J(\theta)=-\sum_{i=1}^{m}(y_i*\log(y_{\theta}(x_i))+(1-y_i)*\log(1-y_{\theta}(x_i)))
J(θ)=−i=1∑m(yi∗log(yθ(xi))+(1−yi)∗log(1−yθ(xi)))
我们对这个函数上的自变量
θ
\theta
θ 求偏导,就可以得到**梯度向量在第
j
j
j组
θ
\theta
θ的坐标点上的表示**形式(详细推导过程看梯度向量的推导):
∂
J
(
θ
)
∂
θ
j
=
d
j
=
∑
i
=
1
m
(
x
i
×
(
y
θ
(
x
i
)
−
y
i
)
)
\frac{\partial J(\theta)}{\partial \theta_j}=d_j=\sum_{i=1}^{m}(x_i×(y_{\theta}(x_i)-y_i))
∂θj∂J(θ)=dj=i=1∑m(xi×(yθ(xi)−yi))
在这个公式下,**只要给定一组
θ
\theta
θ的取值
θ
j
\theta_j
θj ,再带入特征矩阵
x
x
x,就可以求得这一组
θ
\theta
θ 取值下的预测结果
y
θ
(
x
i
)
y_{\theta}(x_i)
yθ(xi),结合真实标签向量
y
i
y_i
yi ,就可以获得这一组
θ
j
\theta_j
θj取值下的梯度向量,其大小表示为
d
j
d_j
dj**。之前说过,我们的目的是在可能的
θ
\theta
θ取值上进行遍历,一次次计算梯度向量,并在梯度向量的反方向上让损失函数
J
J
J下降至最小值。**在这个过程中,我们的
θ
\theta
θ 和梯度向量的大小
d
d
d 都会不断改变,而我们遍历
θ
\theta
θ 的过程可以描述为**:
(梯度下降表示)
θ
j
1
=
θ
j
−
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。
需要这份系统化的资料的朋友,可以添加V获取:vip1024b (备注软件测试)
[外链图片转存中…(img-aI4zd1kz-1713253249430)]
一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!