linux常见命令---深度学习炼丹炉必备---更新中

本文介绍了如何在Linux环境下管理环境变量、使用conda激活和查看环境、安装CUDA驱动,以及如何在Ubuntu系统中安装基础工具。此外,还提供了针对Java开发者的学习资源,包括面试技巧、算法知识和进阶开发学习资料,以及架构相关的内容。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

10.查看本机IP地址


1.修改环境变量


vim ~/.bashrc

保存环境变量

source ~/.bashrc

如果在执行保存环境变量代码时出现如下报错:

则需要在bashrc中的新添加的环境变量末尾增加上“fi”即可,如下:

如果在bashrc中输错,出现linux命令全部失效,则看下面操作

如果linux命令全部失效,则可以通过执行下面命令:

PATH=/bin:/usr/bin

对命令进行初始化,然后在修改bashrc中的内容就可以!

2.查看当前conda环境


conda info --envs

3.如果执行conda activate ***出现问题时需要初始化shell


执行:

conda init bash

4.查看当前cuda版本


nvcc -V

*5.有了ubuntu系统安装基本的工具


这条命令包含很多基本的工具,诸如gcc编译器等

apt install build-essential

6.linux下安装显卡驱动


直接安装会出现问题,因为大部分电脑上安装的虚拟机都是不支持安装显卡的,所以安装命令需要稍作修改:

sudo ./NVIDIA-Linux-x86_64-455.28.run --add-this-kernel

7.linux下安装cuda


下载对应的runfile文件,执行下面代码:

sudo sh cuda_10.0.130_410.48_linux.run

但是出现了问题,报错如下:

Installing the NVIDIA display driver... The driver installation is unable to locate the kernel source. Please make sure that the kernel source packages are installed and set up correctly. If you know that the kernel source packages are installed and set up correctly, you may pass the location of the kernel source with the '--kernel-source-path' flag.

此处解决方法为:安装 dkms

sudo apt install dkms

然后再次运行命令即可:

sudo sh cuda_10.0.130_410.48_linux.run

成功安装:

然后修改环境变量:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-10.0/lib64

export PATH=$PATH:/usr/local/cuda-10.0/bin

export CUDA_HOME=$CUDA_HOME:/usr/local/cuda-10.0

如果有多个版本的cuda怎么办呢?

此种安装方式,是将_/usr/local_的cuda文件链接到了对应cuda版本的根目录。输入以下命令可以查看当前cuda文件的链接情况:

cd /usr/local/

stat cuda

随后会输出以下信息:

在_/usr/local_下,我们可以安装多个版本的cuda,这里我列出我电脑内的cuda版本,有cuda9.0、cuda10.0等多个版本

命令行输入以下命令,断开cuda文件与cuda-10.1的符号链接:

sudo rm -rf cuda

自我介绍一下,小编13年上海交大毕业,曾经在小公司待过,也去过华为、OPPO等大厂,18年进入阿里一直到现在。

深知大多数Java工程师,想要提升技能,往往是自己摸索成长或者是报班学习,但对于培训机构动则几千的学费,着实压力不小。自己不成体系的自学效果低效又漫长,而且极易碰到天花板技术停滞不前!

因此收集整理了一份《2024年Java开发全套学习资料》,初衷也很简单,就是希望能够帮助到想自学提升又不知道该从何学起的朋友,同时减轻大家的负担。img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,基本涵盖了95%以上Java开发知识点,真正体系化!

由于文件比较大,这里只是将部分目录截图出来,每个节点里面都包含大厂面经、学习笔记、源码讲义、实战项目、讲解视频,并且会持续更新!

如果你觉得这些内容对你有帮助,可以扫码获取!!(备注Java获取)

img

最后总结

搞定算法,面试字节再不怕,有需要文章中分享的这些二叉树、链表、字符串、栈和队列等等各大面试高频知识点及解析

最后再分享一份终极手撕架构的大礼包(学习笔记):分布式+微服务+开源框架+性能优化

image

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!
style=“zoom: 33%;” />

最后总结

搞定算法,面试字节再不怕,有需要文章中分享的这些二叉树、链表、字符串、栈和队列等等各大面试高频知识点及解析

最后再分享一份终极手撕架构的大礼包(学习笔记):分布式+微服务+开源框架+性能优化

[外链图片转存中…(img-3dExVVAl-1713467284919)]

《互联网大厂面试真题解析、进阶开发核心学习笔记、全套讲解视频、实战项目源码讲义》点击传送门即可获取!

### 使用 Stable-Diffusion-WebUI 进行图像生成 为了利用 `stable-diffusion-webUI` 工具进行高效的图像生成,需先安装该工具。通常情况下,可以从 GitHub 下载最新版本的源码[^2]。 #### 安装依赖库 确保本地环境已配置好 Python 和 Git 后,在命令行输入以下指令来克隆仓库并进入项目目录: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git cd stable-diffusion-webui ``` 接着按照官方文档说明完成必要的依赖项安装过程。 #### 图像生成功能介绍 启动 Web UI 应用程序之后,可以通过浏览器访问界面来进行交互式的操作。主要功能模块包括但不限于以下几个方面: - **Prompt 输入框**:用于定义想要创建的内容描述语句。这里支持复杂的自然语言表达形式以及特定标记语法,比如权重调整、条件分支等特性[^3]。 - **采样方法选择器**:提供了多种不同的随机漫步算法供用户挑选,默认采用的是 k_euler_a 方案;其他选项还包括 ddim、plms 等不同类型的扩散模型变体。 - **参数调节滑杆组**:允许自定义诸如步数(Steps)、宽度/高度尺寸(Width / Height)、CFG Scale 参数等一系列影响最终效果的关键属性值。 当一切准备就绪后点击“Generate”按钮即可开始渲染流程,并实时查看进度直至获得满意的结果为止。 对于希望进一步定制化体验或是探索更多可能性的技术爱好者来说,则可能涉及到更深层次的功能——即通过微调现有预训练好的权重文件实现个性化风格迁移任务。 #### 模型训练指南概览 如果目标是从零构建全新的艺术作品集而不是简单地基于已有素材做修改的话,那么就需要考虑如何有效地收集标注数据集并对网络架构实施针对性优化了。这一步骤相对复杂得多,涉及到了解深度学习框架的基础知识和技术细节。 不过借助于社区贡献者们分享出来的教程资源和开源脚本包的帮助之下,即使是初学者也能够在较短时间内掌握基本要领。例如,可以参考官方Wiki页面上的指导手册逐步建立起适合自己的工作流管线。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值