一般情况下,只选择样本数据集中最相似的前k个数据,并且选择k中出现次数最多的类别作为新数据的类。
2. 算法过程
输入:有标签的样例
输出:新样例的预测标签
(1)对于给定的距离,找到预测样本的k个最近的邻居,放入到Nk(x)中
(2)在Nk(x)中依据分类规则(如投票)判断新样例的预测类型
3. 算法优缺点
优点:
(1)算法简单,理论成熟,可用于分类和回归。
(2)对异常值不敏感。
(3)可用于非线性分类。
(4)比较适用于容量较大的训练数据,容量较小的训练数据则很容易出现误分类情况。
(5)KNN算法原理是根据邻域的K个样本来确定输出类别,因此对于不同类的样本集有交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为合适。
(6)对数据类型(图片,文本,视频)不做限制
缺点:
(1)时间复杂度和空间复杂度高。(训练复杂度为0,但测试耗时,需要计算很多距离,还要相应存储,再选出最小的k个距离)
(2)训练样本不平衡,对稀有类别的预测准确率低。
(3)相比决策树模型,KNN模型可解释性不强。
三、KNN模型
k近邻模型对应一个特征空间划分。每个样例是最小的单元,对应一个类别。
要点:
(1)距离度量Distance metric
(2)k值的选择Choice of k value
(3)分类规则Classification decisio