机器学习 -- 简析KNN(k近邻算法)

一般情况下,只选择样本数据集中最相似的前k个数据,并且选择k中出现次数最多的类别作为新数据的类。

2. 算法过程

输入:有标签的样例

输出:新样例的预测标签

(1)对于给定的距离,找到预测样本的k个最近的邻居,放入到Nk(x)中

(2)在Nk(x)中依据分类规则(如投票)判断新样例的预测类型

3. 算法优缺点

优点:

(1)算法简单,理论成熟,可用于分类和回归。

(2)对异常值不敏感。

(3)可用于非线性分类。

(4)比较适用于容量较大的训练数据,容量较小的训练数据则很容易出现误分类情况。

(5)KNN算法原理是根据邻域的K个样本来确定输出类别,因此对于不同类的样本集有交叉或重叠较多的待分样本集来说,KNN方法较其他方法更为合适。

(6)对数据类型(图片,文本,视频)不做限制

缺点:

(1)时间复杂度和空间复杂度高。(训练复杂度为0,但测试耗时,需要计算很多距离,还要相应存储,再选出最小的k个距离)

(2)训练样本不平衡,对稀有类别的预测准确率低。

(3)相比决策树模型,KNN模型可解释性不强。

三、KNN模型


k近邻模型对应一个特征空间划分。每个样例是最小的单元,对应一个类别。

要点:

(1)距离度量Distance metric

(2)k值的选择Choice of k value

(3)分类规则Classification decisio

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值