2024年最全随机森林、数据集划分、准确率、混淆矩阵(Python实现)

本文通过一个相亲网站的案例介绍了如何使用Python实现随机森林分类器,并展示了数据集划分、准确率计算以及混淆矩阵的概念和应用。通过实例详细解释了train_test_split函数、accuracy_score函数以及confusion_matrix函数的用法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Process finished with exit code 0

1.2 案例2

情景:基于相亲网站男方提供的个人基本资料作为输入,以女方是否相亲做标签做训练,用训练出的模型预测女方是否相亲。

#导包=

from sklearn.ensemble import RandomForestClassifier

#“年龄”, “身高”, “年收入”, ‘学历’(0:大专, 1:本科, 2:硕士)

X = [

[25, 179, 15, 0],

[33, 190, 19, 0],

[28, 180, 18, 2],

[25, 178, 18, 2],

[46, 100, 100, 2],

[40, 170, 170, 1],

[34, 174, 20, 2],

[36, 181, 55, 1],

[35, 170, 25, 2],

[30, 180, 35, 1],

[28, 174, 30, 1],

[29, 176, 36, 1],

]

#=有否相亲 0:N 1:Y=========

y = [0, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1]

#现在我们把训练数据,和对应的分类放入分类器中进行训练

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值