一、前言
PyTorch 是深度学习领域常用框架,Anaconda 便于环境管理,PyCharm 是高效 Python 开发工具。本文详细讲解在 Anaconda 中搭建 PyTorch 环境,及在 PyCharm 中配置该环境的步骤,帮大家快速开启深度学习开发。
二、Anaconda 与 PyTorch 安装准备
(一)Anaconda 安装
- 下载:前往 Anaconda 官网,选对应系统(Windows、Linux、Mac)安装包。若下载速度过慢或者追求稳定,也可用清华大学镜像源 Index of /anaconda/archive/ | 清华大学开源软件镜像站 下载历史版本。
(二)确认硬件与 CUDA 支持(GPU 版需关注)
若电脑有 NVIDIA 独立显卡(如作者电脑的RTX 4060 ),想装 GPU 加速版 PyTorch,需:
- 检查 GPU 与驱动:右键任务栏开 “任务管理器”→切 “性能” 标签,看有无 “GPU” 项,确认显卡型号。按
Win+R
输cmd
开命令行,输nvidia-smi
,看 “CUDA Version”,代表驱动支持的最高 CUDA 版本(如 12.3 )。 - CUDA 与 PyTorch 匹配:PyTorch 官网选安装命令时,CUDA Runtime 版本(如 11.8、12.6 )需 ≤ 驱动支持的 CUDA 版本(如 12.3 则选 ≤12.3 版本 )。
三、Anaconda 中创建并配置 PyTorch 环境
(一)创建虚拟环境
- 打开 “Anaconda Prompt”(Windows)或终端(Linux/Mac)。
- 输命令创建虚拟环境:
conda create -n pytorch python=3.13
pytorch
是环境名,可自定义;python=3.13
指定 Python 版本,按需选(建议 3.9 - 3.12 ,适配性好 ),作者电脑上下载的python版本是3.13,所以就用的3.13版本,大家可以按实际考虑,需注意的是python版本低于就不再支持配置pytorch环境了。-
PyTorch 1.x 系列:支持 Python 3.7 - 3.10,但已逐渐停止维护。
例如,PyTorch 1.13 仍支持 Python 3.7,但建议升级到更高版本。
- 回车后,conda 自动装依赖,出现提示输
y
确认。
(二)激活虚拟环境
创建后,输以下命令激活(Windows/Linux/Mac 通用):
conda activate pytorch
激活后,命令行前缀会变 (pytorch)
,代表进入该环境。
四、安装 PyTorch
- 从 PyTorch 官网获取安装命令
打开 PyTorch 官网 ,按实际选:
- OS:选系统(Windows/Linux/Mac);
- Package:选
Conda
(也可选Pip
,但 Conda 环境管理更方便 ); - Compute Platform:若 GPU 是 NVIDIA ,选对应 CUDA 版本(如
CUDA 11.8
,需 ≤ 驱动支持的 CUDA 版本 )。
官网会生成类似命令:
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu128
- 若配了国内镜像源,删
-c pytorch -c nvidia
,让 conda 从镜像源下载,加速安装。
- 粘贴命令到激活的环境中运行,输
y
确认安装,等待包下载、配置完成。
(三)验证安装
在激活的环境中,输 python
进 Python 交互界面,再输:
>>>python
Python 3.13.4 | packaged by Anaconda, Inc. | (main, Jun 4 2025, 15:26:43) [MSC v.1929 64 bit (AMD64)] on win32
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> torch.cuda.is_available()
若无报错,并且返回true,说明安装成功。
五、PyCharm 中配置 PyTorch 环境
(一)打开 PyCharm 并新建 / 打开项目
- 启动 PyCharm ,选 “New Project”(新建项目 )或打开已有项目。
(二)关联 Anaconda 虚拟环境
- 新建项目时,在 “Python Interpreter”(Python 解释器 )配置区,点齿轮图标 → “Add Interpreter” → “Conda Environment” 。
- 选 “Existing environment”(已有环境 ),在 “Interpreter” 栏,浏览找到 Anaconda 安装目录下的
Scripts\conda.exe
。 - 点 “OK” 确认,PyCharm 会加载该环境的依赖,关联 PyTorch 。
(三)验证环境配置
在python控制台,输测试代码:
import torch
print("PyTorch 版本:", torch.__version__)
print("CUDA 可用:", torch.cuda.is_available())
右键运行代码,若控制台输版本号和预期的 cuda.is_available()
结果,说明环境配置成功。
六、常见问题与解决
(一)安装 PyTorch 时下载慢 / 失败
- 解决方案:配国内镜像源(如清华、中科大源 ),或换
Pip
安装(官网选Pip
生成命令,用pip install
安装 )。
(二)PyCharm 中无法找到 Anaconda 环境
- 解决方案:检查 “Add Interpreter” 时,是否选对环境路径(确保是
envs\环境名\python.exe
);若 Anaconda 刚装,重启 PyCharm 重试。
(三)导入 PyTorch 报错 ModuleNotFoundError
- 解决方案:确认已激活正确环境(
conda activate 环境名
),且在该环境中确实安装了 PyTorch(用conda list
或pip list
查看包列表 )。
七、总结
"千里之行,始于足下。" 深度学习的学习与实践亦如此。通过以上步骤,我们完成了 Anaconda 虚拟环境创建、PyTorch 安装(适配 GPU 版本)及 PyCharm 开发环境配置。这套组合——Anaconda 管理环境、PyCharm 编写代码,将为你提供高效的深度学习开发体验。若遇到问题,请保持耐心:"不积跬步,无以至千里。" 多检查环境激活状态、软件包安装情况及路径配置,善用 PyCharm 的报错提示定位问题。记住,每个技术难题的解决都是通向精通的阶梯。希望本文能帮助你顺利搭建开发环境。愿你我在 PyTorch 的深度学习世界中,"博观而约取,厚积而薄发",在AI的星辰大海中扬帆起航!