<think>我们有一个RSA加密和解密的接口集合,我们需要实现一个程序,该程序可以对指定的文件进行加密或解密操作。
程序需要支持以下功能:
1. 生成RSA密钥对并保存到文件(可选,如果用户需要生成密钥)
2. 使用公钥加密文件
3. 使用私钥解密文件
由于接口中包含了密钥生成、保存、加载,以及加密解密函数,我们可以设计如下:
程序流程:
1. 解析命令行参数,确定操作模式(生成密钥、加密、解密)以及相应的参数(如密钥文件、密码、输入文件、输出文件等)。
2. 根据模式执行相应操作。
操作模式:
- 生成密钥:指定密钥位数、私钥文件、公钥文件、密码(可选)
- 加密:指定公钥文件、输入文件(明文)、输出文件(密文)
- 解密:指定私钥文件、输入文件(密文)、输出文件(明文)、密码(如果私钥有加密的话)
注意:RSA加密有长度限制,所以对于大文件,我们不能一次性加密。通常的做法是:
- 生成一个对称密钥(比如AES密钥)
- 用对称密钥加密文件
- 用RSA公钥加密对称密钥
- 将加密后的对称密钥和加密的文件内容一起存储
但是,根据题目给出的接口,我们只有RSA的加密解密函数,而且接口是直接对一段数据进行加密解密。
由于RSA加密的数据长度受密钥长度限制,例如1024位密钥最多只能加密117字节(128-11,因为使用PKCS#1 v1.5 padding)。
因此,对于大文件,我们需要分块加密。但是分块加密也有问题:效率低,且每块加密后的长度会固定为密钥长度(例如128字节)。
不过,题目要求使用给定的接口,所以我们按照分块加密的方式来实现。
步骤:
1. 初始化:调用rsa_init()(如果该函数用于初始化库,比如OpenSSL的初始化)
2. 加载密钥:根据模式加载公钥(加密)或私钥(解密)
3. 打开输入文件和输出文件
4. 分块读取输入文件,然后调用加密或解密函数处理每一块,将结果写入输出文件。
5. 清理:关闭文件,释放密钥,调用rsa_cleanup()
注意:分块的大小需要根据密钥长度和填充方式确定。我们假设使用PKCS#1 v1.5填充(这是RSA加密的常见填充方式)。
加密时,每次读取的明文块长度应小于等于RSA_size(pub_key) - 11(因为填充需要11字节)。
解密时,每次读取的密文块长度应为RSA_size(priv_key)(即密钥的模长,以字节为单位)。
但是,给定的接口中,加密函数为:
int rsa_encrypt(RSA* pub_key, const unsigned char* plaintext, int pt_len, unsigned char* ciphertext);
解密函数为:
int rsa_decrypt(RSA* priv_key, const unsigned char* ciphertext, int ct_len, unsigned char* plaintext);
根据常规,rsa_encrypt函数返回加密后的密文长度,应该等于RSA密钥的模长(字节数)。同样,解密后的明文长度应该等于我们传入的明文块长度(因为是对称的)。
因此,我们可以这样分块:
加密:
块大小(读入):chunk_size = RSA_size(pub_key) - 11
密文块大小:rsa_size = RSA_size(pub_key)
每次读取chunk_size字节,加密后得到rsa_size字节,写入输出文件。
解密:
块大小(读入):rsa_size = RSA_size(priv_key) (因为密文块是固定大小的)
每次读取rsa_size字节,解密后得到chunk_size(即加密时使用的块大小)字节,写入输出文件。
但是,注意:在解密时,我们不知道加密时使用的块大小(即chunk_size),但我们可以知道解密后的数据块长度,因为rsa_decrypt函数会返回实际解密出的明文长度。
因此,在解密时,我们读取固定大小的块(rsa_size),然后解密,得到实际长度,然后写入该长度的数据。
但是,这里有一个问题:文件大小可能不是块的整数倍。在加密时,最后一块可能不足chunk_size,我们仍然可以加密,因为函数允许传入任意长度(只要不超过chunk_size)。解密时,最后一块也是完整的rsa_size,所以没有问题。
但是,如果文件很大,我们需要考虑内存分配。我们可以为每个块动态分配内存,但更高效的方式是使用栈上的数组(如果块大小不大,比如1024位密钥对应128字节,那么我们可以分配128字节的栈数组)。但是,如果密钥很大(比如4096位),那么块大小会达到512字节,仍然可以接受。
然而,为了灵活性,我们使用动态分配:为每个块分配内存(加密时:输入块chunk_size,输出块rsa_size;解密时:输入块rsa_size,输出块chunk_size)。但是,由于chunk_size=rsa_size-11,所以解密后的块最大为rsa_size-11,我们可以分配一个同样大小的缓冲区。
但是,注意:解密时,我们不知道加密时使用的块大小,但我们可以知道解密后的数据长度,所以我们可以按实际长度写入。
具体步骤(加密):
1. 打开输入文件(明文)和输出文件(密文)。
2. 获取RSA_size(pub_key),记为rsa_size,计算明文块大小chunk_size = rsa_size - 11。
3. 分配内存:plain_chunk = malloc(chunk_size); cipher_chunk = malloc(rsa_size);
4. 循环读取:每次读取chunk_size字节到plain_chunk,实际读取到的长度len。
如果len>0,则调用rsa_encrypt加密这块数据,得到密文长度cipher_len(应该等于rsa_size),然后将cipher_chunk写入输出文件。
如果len==0,则退出循环。
5. 注意最后一块可能不足chunk_size,但我们仍然可以加密,因为函数允许传入小于chunk_size的长度(但不要超过)。
解密步骤:
1. 打开输入文件(密文)和输出文件(明文)。
2. 获取RSA_size(priv_key),记为rsa_size。
3. 分配内存:cipher_chunk = malloc(rsa_size); plain_chunk = malloc(rsa_size); // 因为解密后最大长度是rsa_size-11,但为了简单,分配rsa_size也够
4. 循环读取:每次读取rsa_size字节到cipher_chunk,实际读取到len。
如果len != rsa_size,则可能出错(因为密文应该是rsa_size的整数倍),除非最后一块?但加密时我们写的是完整块,所以文件大小应该是rsa_size的整数倍。所以如果读取不足,且不是最后一块(即len>0且不足),则报错。
调用rsa_decrypt,传入cipher_chunk和len(注意:len应该等于rsa_size,否则解密函数可能失败),得到明文长度plain_len,然后将plain_chunk的前plain_len字节写入输出文件。
5. 注意:如果最后一块读取时,文件结束,那么读取到的长度可能小于rsa_size,这应该视为错误,因为加密后的文件长度必须是rsa_size的整数倍。
但是,加密时,我们每次写入一个完整的密文块(rsa_size字节),所以密文文件大小一定是rsa_size的整数倍。因此,解密时,如果读取不到完整的块,就报错。
另外,我们还需要考虑错误处理:加密或解密函数返回错误。
根据以上思路,我们编写程序。
首先,我们定义程序的使用方法:
生成密钥:
./rsa_tool -g -b <bits> -p <private key file> -u <public key file> [-pass <password>]
加密:
./rsa_tool -e -i <input file> -o <output file> -u <public key file>
解密:
./rsa_tool -d -i <input file> -o <output file> -p <private key file> [-pass <password>]
然后,我们实现主函数,解析参数。
由于我们使用C语言,并且是在Linux平台,我们可以使用getopt来解析参数。
注意:在调用rsa_init()时,我们可能需要进行一些初始化工作(比如OpenSSL的初始化)。同样,在结束时调用rsa_cleanup()。
我们假设这些接口是基于OpenSSL实现的,但题目没有给出具体实现,我们只使用这些接口。
下面我们开始编写代码。
由于代码较长,我们将分步骤编写,并添加必要的注释。
注意:为了安全,密码在解密时可能需要从命令行或环境变量获取,这里我们简单地从命令行参数获取(-pass参数)。
但是,在保存私钥时,如果提供了密码,则私钥文件会被加密。在加载私钥时,需要提供相同的密码。
我们开始编写代码框架:
步骤:
1. 包含必要的头文件:stdio.h, stdlib.h, string.h, unistd.h (for getopt)
2. 定义全局变量(不需要)
3. 编写主函数,解析参数
4. 根据不同的模式执行操作
由于我们不知道rsa_init等函数的声明,我们假设有一个头文件包含了这些声明。这里我们假设这些函数已经存在,我们将调用它们。
为了简化,我们假设密码最大长度为256。
另外,由于RSA加密解密的分块处理,我们按照上述逻辑实现。
代码实现如下:</think>下面是一个使用提供的RSA接口实现文件加密/解密的C语言程序。该程序支持生成密钥对、加密文件和解密文件操作,并处理大文件的分块加密/解密。
```c
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
// 假设这些函数声明在rsa_utils.h中
int rsa_init();
void rsa_cleanup();
RSA* rsa_generate_keypair(int bits);
int rsa_save_keys(RSA* rsa, const char* private_file,
const char* public_file, const char* password);
RSA* rsa_load_private_key(const char* filename, const char* password);
RSA* rsa_load_public_key(const char* filename);
int rsa_encrypt(RSA* pub_key, const unsigned char* plaintext,
int pt_len, unsigned char* ciphertext);
int rsa_decrypt(RSA* priv_key, const unsigned char* ciphertext,
int ct_len, unsigned char* plaintext);
void rsa_free_key(RSA* rsa);
#define MAX_PASS_LEN 256
#define CHUNK_SIZE 245 // 2048-bit密钥最大加密块大小 (256-11 bytes)
// 打印用法信息
void print_usage(const char* prog_name) {
fprintf(stderr, "Usage:\n");
fprintf(stderr, " Generate keys: %s -g -b <bits> -p <private_file> -u <public_file> [-pass <password>]\n", prog_name);
fprintf(stderr, " Encrypt file: %s -e -i <input> -o <output> -u <public_key>\n", prog_name);
fprintf(stderr, " Decrypt file: %s -d -i <input> -o <output> -p <private_key> [-pass <password>]\n", prog_name);
exit(EXIT_FAILURE);
}
// 生成密钥对
void generate_keys(int bits, const char* priv_file, const char* pub_file, const char* password) {
RSA *rsa = rsa_generate_keypair(bits);
if (!rsa) {
fprintf(stderr, "Error generating RSA keypair\n");
exit(EXIT_FAILURE);
}
if (rsa_save_keys(rsa, priv_file, pub_file, password) != 0) {
fprintf(stderr, "Error saving keys to files\n");
rsa_free_key(rsa);
exit(EXIT_FAILURE);
}
rsa_free_key(rsa);
printf("Keys generated successfully:\n Private: %s\n Public: %s\n", priv_file, pub_file);
}
// 加密文件
void encrypt_file(const char* input_file, const char* output_file, const char* pub_key_file) {
RSA *pub_key = rsa_load_public_key(pub_key_file);
if (!pub_key) {
fprintf(stderr, "Error loading public key\n");
exit(EXIT_FAILURE);
}
int rsa_size = RSA_size(pub_key);
if (rsa_size < CHUNK_SIZE + 11) {
fprintf(stderr, "Key size too small for encryption chunks\n");
rsa_free_key(pub_key);
exit(EXIT_FAILURE);
}
FILE *in = fopen(input_file, "rb");
FILE *out = fopen(output_file, "wb");
if (!in || !out) {
perror("File open error");
rsa_free_key(pub_key);
exit(EXIT_FAILURE);
}
unsigned char in_buf[CHUNK_SIZE];
unsigned char *out_buf = malloc(rsa_size);
if (!out_buf) {
perror("Memory allocation error");
fclose(in); fclose(out);
rsa_free_key(pub_key);
exit(EXIT_FAILURE);
}
size_t bytes_read;
while ((bytes_read = fread(in_buf, 1, CHUNK_SIZE, in)) > 0) {
int enc_len = rsa_encrypt(pub_key, in_buf, bytes_read, out_buf);
if (enc_len <= 0) {
fprintf(stderr, "Encryption failed\n");
break;
}
fwrite(out_buf, 1, enc_len, out);
}
free(out_buf);
fclose(in);
fclose(out);
rsa_free_key(pub_key);
printf("File encrypted successfully: %s -> %s\n", input_file, output_file);
}
// 解密文件
void decrypt_file(const char* input_file, const char* output_file,
const char* priv_key_file, const char* password) {
RSA *priv_key = rsa_load_private_key(priv_key_file, password);
if (!priv_key) {
fprintf(stderr, "Error loading private key (wrong password?)\n");
exit(EXIT_FAILURE);
}
int rsa_size = RSA_size(priv_key);
FILE *in = fopen(input_file, "rb");
FILE *out = fopen(output_file, "wb");
if (!in || !out) {
perror("File open error");
rsa_free_key(priv_key);
exit(EXIT_FAILURE);
}
unsigned char *in_buf = malloc(rsa_size);
unsigned char *out_buf = malloc(rsa_size);
if (!in_buf || !out_buf) {
perror("Memory allocation error");
fclose(in); fclose(out);
free(in_buf); free(out_buf);
rsa_free_key(priv_key);
exit(EXIT_FAILURE);
}
size_t bytes_read;
while ((bytes_read = fread(in_buf, 1, rsa_size, in)) > 0) {
// 只处理完整块
if (bytes_read != (size_t)rsa_size) {
fprintf(stderr, "Warning: Incomplete block at end of file\n");
break;
}
int dec_len = rsa_decrypt(priv_key, in_buf, bytes_read, out_buf);
if (dec_len < 0) {
fprintf(stderr, "Decryption failed\n");
break;
}
fwrite(out_buf, 1, dec_len, out);
}
free(in_buf);
free(out_buf);
fclose(in);
fclose(out);
rsa_free_key(priv_key);
printf("File decrypted successfully: %s -> %s\n", input_file, output_file);
}
int main(int argc, char *argv[]) {
if (rsa_init() != 0) {
fprintf(stderr, "RSA initialization failed\n");
return EXIT_FAILURE;
}
int opt;
char *priv_file = NULL, *pub_file = NULL;
char *input_file = NULL, *output_file = NULL;
char *password = NULL;
int bits = 0;
int gen_mode = 0, enc_mode = 0, dec_mode = 0;
// 解析命令行参数
while ((opt = getopt(argc, argv, "gdei:o:p:u:b:pass:")) != -1) {
switch (opt) {
case 'g': gen_mode = 1; break;
case 'e': enc_mode = 1; break;
case 'd': dec_mode = 1; break;
case 'i': input_file = optarg; break;
case 'o': output_file = optarg; break;
case 'p': priv_file = optarg; break;
case 'u': pub_file = optarg; break;
case 'b': bits = atoi(optarg); break;
case 'pass': password = optarg; break;
default: print_usage(argv[0]);
}
}
// 验证参数组合
if (gen_mode + enc_mode + dec_mode != 1) {
fprintf(stderr, "Must specify exactly one mode (-g/-e/-d)\n");
print_usage(argv[0]);
}
if (gen_mode) {
if (!bits || !priv_file || !pub_file) {
fprintf(stderr, "Missing required arguments for key generation\n");
print_usage(argv[0]);
}
generate_keys(bits, priv_file, pub_file, password);
}
else if (enc_mode) {
if (!input_file || !output_file || !pub_file) {
fprintf(stderr, "Missing required arguments for encryption\n");
print_usage(argv[0]);
}
encrypt_file(input_file, output_file, pub_file);
}
else if (dec_mode) {
if (!input_file || !output_file || !priv_file) {
fprintf(stderr, "Missing required arguments for decryption\n");
print_usage(argv[0]);
}
decrypt_file(input_file, output_file, priv_file, password);
}
rsa_cleanup();
return EXIT_SUCCESS;
}
```
### 代码解释
1. **程序结构**:
- `main()`:解析命令行参数并调用相应功能
- `generate_keys()`:生成并保存RSA密钥对
- `encrypt_file()`:使用公钥加密文件
- `decrypt_file()`:使用私钥解密文件
- `print_usage()`:显示帮助信息
2. **密钥生成**:
- 使用`rsa_generate_keypair()`生成密钥对
- 通过`rsa_save_keys()`保存到文件
- 支持密码保护私钥(可选)
3. **文件加密**:
- 加载公钥文件
- 分块读取输入文件(每块245字节)
- 每块使用`rsa_encrypt()`加密
- 将加密块写入输出文件
4. **文件解密**:
- 加载私钥文件(可能需要密码)
- 分块读取加密文件(每块256字节)
- 每块使用`rsa_decrypt()`解密
- 将解密数据写入输出文件
5. **重要常量**:
- `CHUNK_SIZE=245`:2048位RSA最大加密块大小
- `MAX_PASS_LEN=256`:密码最大长度
6. **错误处理**:
- 检查所有关键操作返回值
- 处理文件I/O错误
- 内存分配检查
- 参数验证
### 使用示例
1. 生成2048位密钥对:
```bash
./rsa_tool -g -b 2048 -p private.pem -u public.pem -pass mypassword
```
2. 加密文件:
```bash
./rsa_tool -e -i plain.txt -o encrypted.bin -u public.pem
```
3. 解密文件:
```bash
./rsa_tool -d -i encrypted.bin -o decrypted.txt -p private.pem -pass mypassword
```
### 注意事项
1. 大文件处理:
- 程序自动分块处理文件,支持任意大小文件
- 加密块大小固定(245字节输入→256字节输出)
- 解密块大小固定(256字节输入→≤245字节输出)
2. 安全性考虑:
- 密码通过命令行传递(生产环境应考虑更安全的方式)
- 敏感数据在内存中应及时清除
- 私钥文件应设置适当权限
3. 性能优化:
- 使用固定大小缓冲区减少内存分配
- 顺序读写优化I/O性能
- 错误发生时立即清理资源
4. 限制:
- 加密文件大小会增加约4.5%(256/245≈1.045)
- 不支持流式加密(需要完整文件)