
YOLO快速入门
文章平均质量分 91
拿下Nahida
多学习多思考
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【零基础保姆级教程】制作自己的数据集——Labelme的安装与使用及常见的报错解决方法
介绍labelme的安装、使用完整流程,进行多边形标注以创建自己的语义分割数据集。原创 2024-12-24 18:15:48 · 1521 阅读 · 1 评论 -
【零基础保姆级教程】制作自己的数据集——Labelimg的安装与使用及常见的报错解决方法
labelimg是应用于目标检测的手动标注工具,英文版,可生成yolo格式、voc、CreatML标签格式的目标检测数据集。本文介绍如何使用以及进行训练、常见问题。原创 2024-12-22 22:24:22 · 1775 阅读 · 0 评论 -
【纯干货级教程】YOLOv7如何添加注意力机制?
注意力机制(Attention Mechanism)是一种在机器学习和深度学习中广泛使用的方法,它用于模仿人类大脑如何聚焦于特定信息并忽略其他不相关信息。本文以YOLOv7为示例介绍如何添加注意力机制。原创 2024-08-14 00:28:52 · 2566 阅读 · 0 评论 -
【零基础保姆级教程】mmcv安装教程
mmcv这个库比较难安装,但在进行深度学习工作的时候却又很难避开,若是没有安装conda环境和CUDA环境的尤其难安装,若大家有遇到mmcv安装上的问题,可按照本文的步骤一步步安装即可解决。原创 2024-08-09 00:37:14 · 15254 阅读 · 3 评论 -
【纯干货级教程】深度学习根据loss曲线进行分析调参
以YOLOv5/YOLOv7示例展示深度学习的目标检测算法在输出的文件中的loss曲线变化规律的一般情况的分析总结,并用以调整自己的模型、调参等。原创 2024-06-16 08:00:00 · 16653 阅读 · 12 评论 -
【YOLOv7改进系列】简化YOLOv7-tiny池化层,便于引入改进的池化层
相比YOLOv5/v7,除了YOLOv5n外,YOLOv7tiny的参数量较小,效果往往也相较YOLOv5n高上不少,又近来博主打算改进yolov7-tiny文件,但苦于其池化层部位是直接写在yaml中的,修改极为不便,因此对池化层做简化处理。本次修改的目标是将yaml中池化层的代码修改为单层代码形式来代表,便于以后做替换、改进工作,因此,需要保证改进前后的参数量、GFLOPS相同。此外,可能有小伙伴会疑问,为何博主不推荐把所有部位都简化?这是因为某些修改常常会修改于1x1的卷积,而不修改3x3的卷积。原创 2024-06-08 00:42:49 · 1835 阅读 · 0 评论 -
【纯干货级教程】解决RuntimeError:CUDA out of memory
本文对于采用CPU/LAPTOP-GPU如何加快训练进程,会有较为明确的描述和解决方法,如果目前你存在设备算力差等类似情况的话,相信参考本文的步骤进行尝试是能够解决的。原创 2024-05-13 13:23:18 · 5266 阅读 · 0 评论 -
【保姆级零基础教程】哪些创新点可以快速改进提升YOLO?
本文主要介绍目标检测算法的改进点,通过阅读本文进行对应的改进,同学们对于如何改进创新,可以获得更多体会。原创 2024-05-11 09:29:21 · 4025 阅读 · 0 评论 -
【零基础保姆级教程】零基础如何快速使用YOLO算法进行科研?
本文主要介绍以下几点:如何寻找合适的数据集。训练YOLOv5/v7的注意点和易错点。对比实验的选择。可用指标的选择。消融实验怎么做。如何丰富论文内容等。原创 2024-05-10 12:21:35 · 2422 阅读 · 3 评论 -
【保姆级最简洁教程】零基础如何快速搭建YOLOv5/v7?
很多小伙伴在初次学习YOLO系列项目存在困难,本文对于小白常犯的错误会有较为明确的描述和解决方法,如果目前你还在跑通YOLO系列代码存在疑问的话,参考本文的步骤一步一步走是能够解决的。相信很多同学目前跑YOLO用的不是实验室主机,而是自己的游戏本/轻薄本/台式主机,本文将分为两部分分别介绍在自己的电脑环境下快速搭建CPU/GPU环境。原创 2024-05-10 10:56:12 · 4730 阅读 · 0 评论