- 博客(88)
- 收藏
- 关注
原创 日元交易策略
2. 计算止损和止盈价位:在识别到高点和低点后,策略会计算相应的止损和止盈价位。本策略是一款基于外汇市场的日元交易策略,主要通过分析价格的高点和低点,结合RSI指标来生成交易信号,并计算相应的止损和止盈价位。同时,策略还设置了止损过滤器和目标过滤器,以便在达到预设的止损或目标价位时自动触发相应的订单。2. 风险管理:策略通过设置止损和止盈价位来控制交易风险,并结合RSI指标来进一步过滤交易信号,降低交易失败的概率。Print(DateTime(), "幻影谷");
2025-07-27 21:46:37
402
原创 自适应滤波策略
具体来说,如果多头持仓的最高价被突破,或者空头持仓的最低价被突破,策略会执行止损操作。3. 开盘时运行:在开盘时,策略会计算各品种的技术指标(如AMA和ATR),并根据这些指标生成交易信号。- 过滤条件:为了减少误判,策略引入了一个过滤乘数`FilterTimes`,用于判断AMA的变化是否超过了标准差的倍数。具体来说,当检测到主力合约更换时,策略会平掉当前持仓,并切换到新的主力合约。1. 多品种交易:策略支持多个期货品种的交易,包括橡胶、PTA、塑料、铜、白银、塑料、螺纹钢、铁矿石、焦炭、鸡蛋等。
2025-07-27 21:34:38
153
原创 斐波那契数列策略
幅度止损: 根据开仓时记录的前一轮高低点(Gl和Dl)以及斐波那契回撤比例设定多个止损点,当价格触及这些回撤水平时,将全部卖出平仓。- Cond3: 在K线和D线交叉后的四个周期内,如果价格能够突破交叉时的高点(Tp),则认为是有效的突破信号。- 在K线和D线交叉后的四个周期内,如果价格能够突破交叉时的高点(Tp),则认为是有效的突破信号,确认开仓时机。- Tp: 记录最近一次K线与D线交叉时的最高价。- P1和P2: 分别用于计算K线和D线的周期,默认都是14,范围从2到40,步长为4。
2025-07-24 23:43:38
467
原创 进阶系统策略
3. 复杂指标计算:策略进一步运用一系列复杂的数学公式和指标计算,如平方根、对数、指数等,生成多个中间变量(如`Var8`至`Var41`),这些变量综合反映了价格的动态变化和趋势强度。2. 相对位置计算:接着,策略通过比较当前收盘价与价格极值,计算出收盘价在价格极值范围内的相对位置,这一比例值被存储在`Var0`中。因此,在实际应用中,需要根据具体情况进行调整和优化。1. 价格极值计算:首先,策略计算给定周期(由`Var3`定义)内的最高价和最低价,分别存储在`Var12`和`Var13`中。
2025-07-24 23:07:04
38
原创 归一化波动率指标
`direction_m0` 到 `direction_m34` 和 `volatility_m0` 到 `volatility_m34`:分别用于存储不同合约品种在不同计算中的价格方向变化序列和价格波动序列。- 使用 `StandardDev` 函数计算每个数据系列收盘价的标准差,参数为 `dataX.close`(其中 `X` 从0到34),周期长度为 `length`,偏移量为1。- 将标准差除以平均值,得到归一化波动率,并存储在相应的 `mX` 变量中(其中 `X` 从0到34)。
2025-07-18 23:07:23
945
原创 线性回归策略思路
在应用VFI移动平均策略时,需要满足几个条件:如果市场持仓为空,且VFI大于进入多头阈值,且线性回归角度大于且VFI大于其移动平均,且线性回归斜率小于上界。在市场持仓为空,VFI大于进入多头阈值,且线性回归角度大于VFI大于其移动平均,且线性回归斜率小于上界的情况下,应用线性回归策略。VFI交叉策略的基本原理: VFI交叉策略是一种基于价格和成交量指标的交易策略,通过监测价格和成交量的变化,发出买卖信号。VFI交叉策略的应用包括计算价格的标准化线性回归斜率,并在VFI于,在下一个Bar在市价卖出。
2025-07-17 22:47:54
370
原创 线性回归策略
在应用VFI移动平均策略时,需要满足几个条件:如果市场持仓为空,且VFI大于进入多头阈值,且线性回归角度大于且VFI大于其移动平均,且线性回归斜率小于上界。在市场持仓为空,VFI大于进入多头阈值,且线性回归角度大于VFI大于其移动平均,且线性回归斜率小于上界的情况下,应用线性回归策略。VFI交叉策略的基本原理: VFI交叉策略是一种基于价格和成交量指标的交易策略,通过监测价格和成交量的变化,发出买卖信号。VFI交叉策略的应用包括计算价格的标准化线性回归斜率,并在VFI于,在下一个Bar在市价卖出。
2025-07-17 22:38:39
145
原创 外侧三兵策略
and High[1] <= High[2] and Low[1] >= Low[2]{ 第二个 K 线是红 K 线且孕育第一个 }and High[1] <= High[2] and Low[1] >= Low[2]{ 第二个 K 线是绿 K 线且孕育第一个 }and High[1] > High[2] and Low[1] < Low[2]{ 第二个 K 线是红 K 线且吞没第一个 }if Close[2] <= Open[2] { 第一个 K 线是绿 K 线 }# 一个标志变量,设置为 1。
2025-07-02 22:41:58
50
原创 正负动向指标思路
通过DMI振荡器的实现,展示了基于DMI指标的趋势跟踪策略的核心内容和特点。该指标通过识别市场趋势的方向和强度,为交易者提供明确的买卖信号,并结合其他技术指标和风险控制机制,以实现稳定的盈利目标。通过多指标的综合分析,可以提高交易信号的可靠性和准确性。灵活性:虽然DMI指标本身具有较强的趋势跟踪能力,但其与不同技术指标的结合使用,如示例中的CCI指标,使得指更加灵活多变,能够适应不同市场环境的需求。趋势跟踪:DMI振荡器是一种典型的趋势跟踪工具,它侧重于捕捉并跟随市场的主要趋势,而非短期波动。
2025-06-29 22:28:53
337
原创 正负动向指标
/ 计算方向移动指标。通过DMI振荡器的实现,展示了基于DMI指标的趋势跟踪策略的核心内容和特点。该指标通过识别市场趋势的方向和强度,为交易者提供明确的买卖信号,并结合其他技术指标和风险控制机制,以实现稳定的盈利目标。DMI振荡器通过将价格行为分解为正向移动(上涨)和负向移动(下跌)两个维度,并比较这两者的力量差异,从而提供市场趋势方向和强度的信息。灵活性:虽然DMI指标本身具有较强的趋势跟踪能力,但其与不同技术指标的结合使用,如示例中的CCI指标,使得指更加灵活多变,能够适应不同市场环境的需求。
2025-06-29 22:24:07
263
原创 成交量流动策略思路
提供了一个基于VFI的交易策略,该策略通过计算VFI来分析市场动向,并根据VFI的交叉点发出买卖信号。该策略包含两部分:计算VFI(Volume Flow Indicator,成交量流动指标)的函数和基于VFI的策略信号。在计算过程中,首先计算典型价格(Typical Price),然后计算平均成交量(MyVolAvg)。最后,将方向性成交量累加并除以平均成交量,得到VFI值,并对其进行平滑处理。策略包括两个部分,一个是计算VFI的函数,一个是策略信号。- 最终通过求和和平均得到VFI,并进行平滑处理。
2025-06-24 22:39:18
353
原创 成交量流动策略
/ VFI = 方向性成交量总和 / 平均成交量。// 动态阈值 = 系数 * 波动率 * 收盘价。// 最大允许成交量 = 均值 * 系数。DirectionalVolume = IFF( MF > CutOff, +VC, // 上涨突破:+VC。MF( NumericRef ), // 输出参数:价格变动值(MyTypicalPrice的差值)SmoothedPeriod( NumericSimple ), // 平滑周期(用于VFI的指数移动平均)
2025-06-24 22:33:43
147
原创 屠龙刀策略
`a1` 至 `a25`:一系列数值序列变量,用于存储计算出的技术指标或中间结果,如移动平均值、标准差、价格波动范围等。- `a18` 至 `a25` 包含了一系列关于价格波动幅度、涨跌比率的统计计算,其中`a25`代表波动率指标。- `xx_1010` 和 `xx_1030`:辅助变量,用于记录平均入场价格和特定条件下的价格水平。- `Nnn1(5)` 和 `Nnn2(20)`:策略中的两个参数,用于内部计算的常数或周期参数。- 计算过去17根K线的收盘价平均值(`a3`)和标准差(`a4`)。
2025-06-24 22:05:00
178
原创 布林波动率策略
/ 计算波动率的变化比例。// 当价格下穿最低价且穿越卖出触发点时卖出 SellShort(1, min(sellPoint, High));// 当价格上穿最高价且穿越买入触发点时买入 Buy(1, max(buyPoint, Low));// 当价格上穿空头止损点时平空 BuyToCover(1, max(shortLiqPoint, Low));// 当价格下穿多头止损点时卖出 Sell(1, min(longLiqPoint, High));
2025-06-06 16:22:20
77
原创 线性斜率选股策略思路
该策略通过线性回归模型对候选ETF进行评分,并根据评分结果动态调整持仓,确保在持有天数达到设定值时进行卖出操作,同时用可用现金买入入选的ETF。- 买入操作:检查当前持仓数量是否达到设定的选入数目,如果没有,则用可用现金买入入选列表中未持有的ETF,确保每个ETF的买入金额相等。- 买入操作:检查当前持仓数量是否达到设定的选入数目,如果没有,则用可用现金买入入选列表中未持有的ETF,确保每个ETF的买入金额相等。- 设置了必须持有的天数,确保每个ETF在卖出前至少持有一定天数。
2025-06-05 22:53:13
755
原创 线性斜率选股策略
策略思维导图:聚宽平台策略代码: (ETF)# 初始化设置# -----------------------策略参数-----------------------# 侯选池g.pool_list = ['510880.XSHG', #红利ETF,代表价值'159915.XSHE', #创业板ETF,代表成长'513100.XSHG', #纳指ETF,代表外盘'518880.XSHG' #黄金ETF,代表商品# 斜率计算长度g.N = 25。
2025-06-05 22:46:20
159
原创 趋势因子均值策略思路
3. 多样化的退出条件:策略设置了多种退出条件,包括基于交易趋势因子的行为、持仓周期的限制等,确保在不同市场情况下都能及时平仓,避免损失扩大。- 如果市场持仓不为多头且ttf上穿买入阈值(hb),则在下一个交易时段以最高价的highbar周期内的最高价买入止损单。- 如果市场持仓不为空头且ttf下穿卖出阈值(lb),则在下一个交易时段以最低价的lowbar周期内的最低价卖空止损单。- 如果市场持仓为多头且持仓周期等于多头持仓周期限制(nbarl),则在下一个交易时段以市价卖出。
2025-06-02 22:19:57
392
原创 趋势直线指标
副图指标实现了一个基于KDJ指标(随机指标)的交易策略,其中K值和D值是通过RSV值计算得出的,而J值是K值和D值的线性组合。副图指标基于KDJ指标,帮助交易者识别短期的超买和超卖状态,而主图指标则通过绘制阻力线和支撑线,提供了中长期价格趋势的关键信息。- 阻力线和支撑线的绘制帮助交易者识别价格的关键水平。- 使用`tl_new_dt`函数基于时间和价格创建新的阻力线,线条向右延伸,颜色为红色,样式为5。- 使用`tl_new_dt`函数基于时间和价格创建新的支撑线,线条向右延伸,颜色为绿色,样式为4。
2025-05-31 22:36:14
1035
原创 多对冲策略
多对冲策略作为一种重要的风险管理工具,通过同时买入和卖出不同货币对,旨在抵消市场波动带来的风险,从而实现更为稳健的投资回报。选取了AUD/USD、NZD/USD、EUR/USD、GBP/USD、USD/JPY和USD/CHF六个货币对,通过正相关和负相关货币对的对冲,旨在捕捉市场中的相对价值变动。3. 稳健收益:通过正相关和负相关货币对的对冲,以及不同区域和货币对之间的交叉对冲,策略旨在实现更为稳健的投资回报。1. 风险分散:多对冲策略通过同时交易多个货币对,有效地分散了单一货币对带来的风险。
2025-05-31 22:12:28
326
原创 截面动量策略思路
为了控制风险,策略引入了百分比追踪止损机制。策略的核心逻辑包括主力合约的动态切换、双均线交叉信号的生成以及基于百分比的追踪止损机制。策略结合了移动平均线和百分比追踪止损两种技术指标,既利用了均线的趋势判断能力,又通过止损机制有效控制了风险。综上所述,该期货日频多品种交易策略通过结合主力合约动态切换、双均线交叉信号和百分比追踪止损等机制,实现了对市场趋势的有效捕捉和风险的有效控制。在每日开盘前,策略会检查当前主力合约是否发生变化,如果发生变化,则执行换月操作,即平掉旧的主力合约并买入新的主力合约。
2025-05-31 21:33:04
635
原创 基本面高股息策略
策略的多因子筛选和高股息率优先原则,确保了选股的质量和收益的稳定性;1. 多因子筛选:策略通过多因子筛选的方式,综合考虑市盈率、市净率、净资产收益率、营业总收入同比增长率、净利润同比增长率等基本面指标,确保选出的股票具有良好的财务健康状况和盈利能力。- 计算股息率:`get_dividend_ratio`函数根据最近三年的分红数据和当前市值计算股息率,并按股息率从大到小排序,最终选择股息率最高的股票。# -----------------------策略参数-----------------------
2025-05-28 23:24:25
147
原创 加减数值策略
同时,当 mp 大于0且 canBuy 为True时,策略会根据 mp 的值买入不同数量的合约。// 如果 mp 等于 3 且入场以来的柱状图数量大于 0 且当日最高价 highD(0)大于 lastTradePrice 加上 3,则在下一根柱状图以当日最高价 highD(0)减去 3 的价格平多仓。// 如果 mp 等于 -3 且入场以来的柱状图数量大于 0 且当日最低价 LowD(0)小于 lasttradeprice 减去 3,则在下一根柱状图以当日最低价 LowD(0)加上 3 的价格平空仓。
2025-05-28 22:54:42
201
原创 递归平滑策略思路
2. 多种入场和退出条件:除了基本的TRIX线与信号线交叉外,还引入了TRIX线的相对位置变化(如TRIX线大于前一根TRIX线)作为入场条件,以及TRIX线的绝对变化(如TRIX线小于前一根TRIX线)作为退出条件。2. TRIX线计算:TRIX线是通过计算EMA3与其前一周期的差值,并除以前一周期的EMA3值,再乘以10得到的。2. 排名系统:通过遍历样本窗口,计算每个条形的排名(Rank)和排名的百分比(RankPct),策略能够识别出成交量和价格变化的相对强度。第一种策略侧重于简单的EMA交叉,
2025-05-28 22:39:26
293
原创 趋势触发策略
交易策略则根据TTF的穿越信号进行买入或卖空的操作。计算趋势触发因子(TTF),即买方力量(BuyPower)减去卖方力量(SellPower)除以买方力量和卖方力量的一半之和,然后乘以。// 计算趋势触发因子(TTF),即(买方力量 - 卖方力量)除以(买方力量 + 卖方力量)的一半,然后乘以100。// 计算趋势触发因子(TTF),即(买方力量 - 卖方力量)除以(买方力量 + 卖方力量)的一半,然后乘以100。TTF的计算公式为买方力量减去卖方力量,然后除以买方力量和卖方力量的和的一半,再乘以。
2025-05-24 22:53:35
322
原创 一个国债交易策略思路
策略的设计思路结合了价格波动范围的计算和市场波动性的评估,旨在捕捉市场的短期趋势并控制风险。相反,如果当前K线的收盘价低于过去5根K线的最低价,并且波动范围较大,策略则会选择开空仓。在这种情况下,策略会进一步分析当前K线的收盘价与过去5根K线的最高价和最低价之间的关系,以确定是开多仓还是开空仓。具体来说,如果当前K线的收盘价高于过去5根K线的最高价,并且当前K线的波动范围较大,策略会选择开多仓。首先,策略通过对过去5根K线的最高价和最低价进行分析,计算出这些K线的价格波动范围。
2025-05-24 22:31:43
380
原创 对冲策略加仓止损盈思路
例如,将一个头寸分成三部分,分别在达到1.5%、2%、2.5%的盈利目标时逐步平仓。固定盈利目标法设置固定的盈利目标,当达到该目标时,全部或部分平仓。例如,设定每笔交易的目标盈利为2%的账户资金,当盈利达到目标时平仓。3. 适应性:策略能够适应不同的市场条件,无论是趋势明显的市场还是波动较大的市场,都能找到合适的操作方法。4. 盈利最大化:通过金字塔加仓法和移动止盈法,策略能够在保证盈利的情况下逐步增加市场暴露,最大化盈利。例如,设定每笔交易的目标盈利为2%的账户资金,当盈利达到目标时平仓。
2025-05-20 23:12:01
887
原创 波峰波谷策略
峰度的计算公式通常如下: \text{Kurtosis} = \frac{n(n+1)}{(n-1)(n-2)(n-3)} \sum \left(\frac{x_i - \bar{x}}{s}\right)^4 - \frac{3(n-1)^2}{(n-2)(n-3)}负的峰度表示数据分布比正态分布更平坦,尾部更薄。总体峰度的计算公式通常为: \text{Kurtosis} = E\left[ \left(\frac{X - \mu}{\sigma}\right)^4 \right] - 3。
2025-05-20 22:47:51
243
原创 左右边界策略
/ 如果 IndF 小于前一柱的 IndF 且前一柱的 IndF 大于前两柱的 IndF 且(IndF 大于卖出区域或前一柱的 IndF 大于卖出区域或 Ind 大于卖出区域),则平仓。以上是基于一套完整的交易逻辑代码,涵盖了函数、指标、信号生成、资金和仓位管理、加仓和减仓逻辑、止损和止盈逻辑等。该系统通过多个指标和函数结合生成交易信号,增加了信号的可靠性和准确性。这是一套完整的交易逻辑策略,涵盖了从函数定义、指标计算、信号生成到资金和仓位管理、加仓和减仓逻辑、以及止损和止盈逻辑的各个方面。
2025-05-20 22:34:24
319
原创 跳空高低开策略思路
综上所述,跳空高低开策略通过简单明了的价格跳空条件识别,结合市场持仓状态检查和用户自定义参数,提供了一种高效且灵活的交易策略。- 在执行交易操作前,策略会检查当前市场持仓状态,只有在没有持仓的情况下才会进行买入或卖空操作,避免重复交易。- 策略不对K线的阴阳线(即收盘价高于或低于开盘价)进行区分,只关注价格的跳空情况,适用于各种市场环境。- 用户可以自定义跳空缺口的数量(n),这使得策略具有较高的灵活性,可以根据不同的市场情况进行调整。
2025-05-20 22:14:34
859
原创 四品种交易策略
对于多头持仓,如果当前最低价低于买入平均价的某个百分比 `P`,或者当前开盘价低于买入平均价的某个百分比 `P`,并且当前时间在交易日的上午9:00之后,策略会执行止损操作,卖出持仓。- 对于空头持仓,如果当前最高价高于卖出平均价的某个百分比 `P`,或者当前开盘价高于卖出平均价的某个百分比 `P`,并且当前时间在交易日的上午9:00之后,策略会执行止损操作,平仓买入。- 当均线 `b` 上穿均线 `e`,且当前市场持仓不是多头时,策略会检查空头跌幅 `ktdf` 是否小于用户定义的阈值 `n`。
2025-05-18 22:51:38
205
原创 自适应过滤策略
具体来说,如果多头持仓的最高价被突破,或者空头持仓的最低价被突破,策略会执行止损操作。3. 开盘时运行:在开盘时,策略会计算各品种的技术指标(如AMA和ATR),并根据这些指标生成交易信号。- 过滤条件:为了减少误判,策略引入了一个过滤乘数`FilterTimes`,用于判断AMA的变化是否超过了标准差的倍数。具体来说,当检测到主力合约更换时,策略会平掉当前持仓,并切换到新的主力合约。1. 多品种交易:策略支持多个期货品种的交易,包括橡胶、PTA、塑料、铜、白银、塑料、螺纹钢、铁矿石、焦炭、鸡蛋等。
2025-05-18 22:31:52
269
原创 多指标组合策略思路
综上所述,该策略通过多维度的指标分析和复杂的条件判断,试图在短期交易中捕捉市场趋势,具有一定的实用性和灵活性,但也需要注意参数选择和市场环境的变化。- 如果当前日内波动范围大于过去n天的平均日内波动范围且当前收盘价低于前一日收盘价,则`n`设为-1。- 如果当前日内波动范围小于过去n天的平均日内波动范围且当前收盘价高于前一日收盘价,则`n`设为1。- 如果当前收盘价低于过去n天的最高价和最低价的平均值,则`u`设为-1。- 如果过去两天的平均收盘价高于过去五天的平均收盘价,则`n`设为-1。
2025-05-18 22:18:37
823
原创 线性回归策略
该策略特别适用于波动较大的市场,能够有效捕捉市场的短期波动,利用ATR和布林带的双重过滤机制,减少噪音干扰。该策略通过结合ATR、线性回归和布林带三种技术指标,形成了一套完整的交易逻辑,旨在捕捉市场的短期波动并实现盈利。- 通过计算ER效率系数和残差序列的标准差,动态调整开仓和平仓的条件,使得策略能够适应不同的市场环境。- 结合了ATR、线性回归和布林带三种技术指标,从不同维度分析市场状态,提高了策略的可靠性和准确性。
2025-05-17 22:34:16
280
原创 多指标组合策略
反之,如果当前波动率低于平均波动率且价格下跌,或者当前波动率高于平均波动率且价格上涨,则认为市场有下跌趋势。4. 风险控制:通过综合条件的判断,策略能够在一定程度上过滤掉噪音信号,减少不必要的交易,从而提高交易的稳定性和收益。2. 条件多样性:策略中包含了基于星期几、日期、均线、高低点、波动率等多种条件的判断,增加了策略的灵活性和适应性。3. 动态调整:通过多个条件的组合和权重调整,策略能够动态适应不同的市场环境,减少单一条件可能带来的误判。
2025-05-17 22:25:45
176
原创 震荡指标工具
在交易结束后,总结交易过程中的经验和教训,以便在未来的交易中不断改进和提高。需要注意的是,颜色编码的蜡烛图只是交易决策的一个辅助工具,不能单独作为交易决策的依据。- 虽然颜色编码的蜡烛图提供了直观的趋势信息,但结合其他技术指标(如均线、MACD、RSI等)可以进一步提高交易策略的准确性和可靠性。- 观察蜡烛图的颜色变化,特别是连续出现相同颜色的蜡烛图,这可以帮助你识别市场的上涨或下跌趋势。- 结合烛台震荡指标和颜色编码的蜡烛图,交易者可以更直观地识别市场趋势,并据此制定交易策略。
2025-05-17 22:03:47
1050
原创 主动量化选股策略思路
基于不同因子的量化策略可以帮助投资者在不同的市场环境中寻找表现较好的股票,并通过定期调仓来优化持仓组合,从而提高投资收益并控制风险。该策略基于交易活跃度、长短期回报比、排名变化以及波动性变化,训练StockRanker模型,并选择排名前十的股票进行日频调仓。排名变化:基于各类指标对股票进行排名,并观察排名的变化情况,这可以帮助我们捕捉到市场情绪的转变和个股的表现差异。由于持仓集中在排名前十的股票,个别股票的负面事件(如业绩爆雷、重大诉讼等)可能会对策略的表现产生较大影响。
2025-05-15 22:58:17
370
原创 平滑过滤值策略
这个函数通过分析历史数据和当前市场状况,自动调整交易信号的频率和质量,从而避免过度交易和错误信号。该策略通过综合运用多种技术指标和过滤机制,旨在实现高效、准确的市场分析和交易决策。2. 波动性分析:通过计算NOISE和EFRATIO,策略能够评估市场的波动性,从而调整交易策略以适应不同的市场环境。3. 信号过滤:通过IFILTER和AUTOFILTER等过滤机制,策略能够减少噪音和错误信号,提高交易的准确性。2. 动态调整:通过平滑系数和过滤函数的引入,策略能够根据市场变化动态调整,适应不同的市场环境。
2025-05-15 22:39:33
385
原创 枢轴支压点策略
If(MarketPosition == 1 && Close[1] < Open[1] && Close[1] < downline && downline < downline[1]) // 如果持仓为多,前一根收盘价小于前一根开盘价,前一根收盘价小于下轨且当前下轨小于上一个下轨。If(MarketPosition == 0 && Low < downline && downline < downline[1]) // 如果持仓为空,当根K线最低价小于下轨且当前下轨小于上一个下轨。
2025-05-14 23:17:17
405
原创 动态多因子策略
策略结合了移动平均线、布林带和MACD等多种技术指标,通过多因子的综合分析,提高交易信号的准确性和可靠性。该策略通过多因子的综合分析和动态调整,旨在实现更精准的市场进出和风险管理,适用于多种市场环境下的交易需求。// MACD均线15。
2025-05-14 23:00:54
163
原创 斜率变化策略
然后,使用线性回归斜率函数(`LinearRegSlope`)计算价格比率的斜率(`slope_pr`),并设定一个价格比回溯长度(`PrLength`),用于计算价格比率的近期最高值(`highest_pr`)和最低值(`lowest_pr`)。具体来说,对于多头仓位,策略会记录入场后的最高价格比率(`highest_pr_after_entry`),并计算出场价格(`stop_price`)为最高价格比率减去回撤系数乘以当前价格比率的变化百分比。例如,当价格比率斜率上升且创近期新高时,进行多头开仓;
2025-05-14 22:49:57
201
金融交易基于矩形形态的技术分析交易策略:金融市场中的价格波动模式识别与突破交易系统设计
2025-06-08
量化交易多种量化策略设计与实现:基于历史数据分析的市场趋势判断和交易决策系统
2025-06-08
【股指交易策略】基于时间窗口和价格波动的关键点位交易系统:TB版自动化买卖与平仓逻辑设计
2025-06-08
量化交易基于成交量加权动量与平均真实波动范围的期货交易策略设计:牛熊市自动识别与资金管理
2025-06-08
量化交易MACD与唐奇安通道结合的上下轨策略:含时间控制机制的期货交易风险控制方案设计
2025-06-08
金融交易基于比率对数策略的金融市场买卖信号系统:股票期货投资决策优化
2025-06-08
量化交易基于均线与动能变化的TB版交易策略设计:趋势判断与进出仓逻辑详解文档的核心内容
2025-06-08
量化交易Dual Thrust交易系统TB版:基于价格波动的自动买卖决策算法设计与实现以下要素:
2025-06-08
量化交易基于慢速随机指标KD值的股票交易策略:市场趋势与超买超卖状态识别系统设计文档的主要内容
2025-06-08
量化交易基于快慢均线交叉的优化交易策略:减少假信号与提高趋势捕捉准确性
2025-06-08
量化交易基于平均差值策略的价格趋势分析与交易信号生成:MC版自动化交易系统设计文档的核心内容
2025-06-08
金融交易基于技术分析的日内买卖策略:捕捉市场短期波动与风险管理
2025-06-08
金融交易基于支撑阻力位的价格行为分析与交易策略设计:整数运算公式及振荡器应用
2025-05-24
量化交易基于资金流指数的股票交易策略设计:通过成交量与价格变动捕捉市场趋势和反转信号
2025-05-24
金融交易基于道氏理论的TB版程序化交易策略:参数配置与交易逻辑详细解析领域(金融交易
2025-05-24
量化交易基于加权移动平均线的WMA系统交易策略设计:多周期均线交叉与市场过滤机制
2025-05-24
量化交易基于ATR指标的多空动态管理策略:实现风险控制与利润增长的交易系统设计
2025-05-24
量化交易长短线差值策略:基于价格波动的交易系统设计与实现了文档的核心内容
2025-05-24
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人