2024年最新梯度下降算法原理讲解——机器学习,毕业一年萌新的C C++大厂面经

img
img

既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!

由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新

如果你需要这些资料,可以戳这里获取

d

(

x

2

)

d

x

=

2

x

\frac{d(x^2)}{dx}=2x

dxd(x2)​=2x

d

(

2

y

5

)

d

y

=

10

y

4

\frac{d(-2y5)}{dy}=-10y4

dyd(−2y5)​=−10y4

d

(

5

θ

)

2

d

θ

=

2

(

5

θ

)

\frac{d(5-\theta )^2}{d\theta}=-2(5-\theta)

dθd(5−θ)2​=−2(5−θ)

2.多变量的微分,当函数有多个变量的时候,即分别对每个变量进行求微分

x

(

x

2

y

2

)

=

2

x

y

2

\frac{\partial}{\partial x}(x2y2) = 2xy^2

∂x∂​(x2y2)=2xy2

y

(

2

y

5

z

2

)

=

10

y

4

\frac{\partial}{\partial y}(-2y5+z2) = -10y^4

∂y∂​(−2y5+z2)=−10y4

θ

2

(

5

θ

1

2

θ

2

12

θ

3

)

=

2

\frac{\partial}{\partial \theta_{2}}(5\theta_{1} + 2\theta_{2} - 12\theta_{3}) = 2

∂θ2​∂​(5θ1​+2θ2​−12θ3​)=2

θ

2

(

0.55

(

5

θ

1

2

θ

2

12

θ

3

)

)

=

2

\frac{\partial}{\partial \theta_{2}}(0.55 - (5\theta_{1} + 2\theta_{2} - 12\theta_{3})) = -2

∂θ2​∂​(0.55−(5θ1​+2θ2​−12θ3​))=−2

2.2.2 梯度

梯度实际上就是多变量微分的一般化。
下面这个例子:

J

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值