既有适合小白学习的零基础资料,也有适合3年以上经验的小伙伴深入学习提升的进阶课程,涵盖了95%以上C C++开发知识点,真正体系化!
由于文件比较多,这里只是将部分目录截图出来,全套包含大厂面经、学习笔记、源码讲义、实战项目、大纲路线、讲解视频,并且后续会持续更新
d
(
x
2
)
d
x
=
2
x
\frac{d(x^2)}{dx}=2x
dxd(x2)=2x
d
(
−
2
y
5
)
d
y
=
−
10
y
4
\frac{d(-2y5)}{dy}=-10y4
dyd(−2y5)=−10y4
d
(
5
−
θ
)
2
d
θ
=
−
2
(
5
−
θ
)
\frac{d(5-\theta )^2}{d\theta}=-2(5-\theta)
dθd(5−θ)2=−2(5−θ)
2.多变量的微分,当函数有多个变量的时候,即分别对每个变量进行求微分
∂
∂
x
(
x
2
y
2
)
=
2
x
y
2
\frac{\partial}{\partial x}(x2y2) = 2xy^2
∂x∂(x2y2)=2xy2
∂
∂
y
(
−
2
y
5
z
2
)
=
−
10
y
4
\frac{\partial}{\partial y}(-2y5+z2) = -10y^4
∂y∂(−2y5+z2)=−10y4
∂
∂
θ
2
(
5
θ
1
2
θ
2
−
12
θ
3
)
=
2
\frac{\partial}{\partial \theta_{2}}(5\theta_{1} + 2\theta_{2} - 12\theta_{3}) = 2
∂θ2∂(5θ1+2θ2−12θ3)=2
∂
∂
θ
2
(
0.55
−
(
5
θ
1
2
θ
2
−
12
θ
3
)
)
=
−
2
\frac{\partial}{\partial \theta_{2}}(0.55 - (5\theta_{1} + 2\theta_{2} - 12\theta_{3})) = -2
∂θ2∂(0.55−(5θ1+2θ2−12θ3))=−2
2.2.2 梯度
梯度实际上就是多变量微分的一般化。
下面这个例子:
J