算法描述
我们来看下希尔排序的基本步骤,在此我们选择增量gap=length/2,缩小增量继续以gap = gap/2的方式,这种增量选择我们可以用一个序列来表示,{n/2,(n/2)/2…1},称为增量序列。希尔排序的增量序列的选择与证明是个数学难题,我们选择的这个增量序列是比较常用的,也是希尔建议的增量,称为希尔增量,但其实这个增量序列不是最优的。此处我们做示例使用希尔增量。
先将整个待排序的记录序列分割成为若干子序列分别进行直接插入排序,具体算法描述:
-
选择一个增量序列t1,t2,…,tk,其中ti>tj,tk=1;
-
按增量序列个数k,对序列进行k 趟排序;
-
每趟排序,根据对应的增量ti,将待排序列分割成若干长度为m 的子序列,分别对各子表进行直接插入排序。仅增量因子为1 时,整个序列作为一个表来处理,表长度即为整个序列的长度。
过程演示
代码实现
下面的排序算法统一使用的测试代码如下,
public static void main(String[] args) {
int[] array = {3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48};
// 只需要修改成对应的方法名就可以了
shellSort(array);
System.out.println(Arrays.toString(array));
}
/**
-
Description: 希尔排序
-
@param array
-
@return void
-
@author JourWon
-
@date 2019/7/11 23:34
*/
public static void shellSort(int[] array) {
if (array == null || array.length <= 1) {
return;
}
int length = array.length;
// temp为临时变量,gap增量默认是长度的一半,每次变为之前的一半,直到最终数组有序
int temp, gap = length / 2;
while (gap > 0) {
for (int i = gap; i < length; i++) {
// 将当前的数与减去增量之后位置的数进行比较,如果大于当前数,将它后移
temp = array[i];
int preIndex = i - gap;
while (preIndex >= 0 && array[preIndex] > temp) {
array[preIndex + gap] = array[preIndex];
preIndex -= gap;
}
// 将当前数放到空出来的位置
最后
既已说到spring cloud alibaba,那对于整个微服务架构,如果想要进一步地向上提升自己,到底应该掌握哪些核心技能呢?
就个人而言,对于整个微服务架构,像RPC、Dubbo、Spring Boot、Spring Cloud Alibaba、Docker、kubernetes、Spring Cloud Netflix、Service Mesh等这些都是最最核心的知识,架构师必经之路!下图,是自绘的微服务架构路线体系大纲,如果有还不知道自己该掌握些啥技术的朋友,可根据小编手绘的大纲进行一个参考。
如果觉得图片不够清晰,也可来找小编分享原件的xmind文档!
且除此份微服务体系大纲外,我也有整理与其每个专题核心知识点对应的最强学习笔记:
-
出神入化——SpringCloudAlibaba.pdf
-
SpringCloud微服务架构笔记(一).pdf
-
SpringCloud微服务架构笔记(二).pdf
-
SpringCloud微服务架构笔记(三).pdf
-
SpringCloud微服务架构笔记(四).pdf
-
Dubbo框架RPC实现原理.pdf
-
Dubbo最新全面深度解读.pdf
-
Spring Boot学习教程.pdf
-
SpringBoo核心宝典.pdf
-
第一本Docker书-完整版.pdf
-
使用SpringCloud和Docker实战微服务.pdf
-
K8S(kubernetes)学习指南.pdf
另外,如果不知道从何下手开始学习呢,小编这边也有对每个微服务的核心知识点手绘了其对应的知识架构体系大纲,不过全是导出的xmind文件,全部的源文件也都在此!
外链图片转存中…(img-FCcqrOsT-1718920984371)]
另外,如果不知道从何下手开始学习呢,小编这边也有对每个微服务的核心知识点手绘了其对应的知识架构体系大纲,不过全是导出的xmind文件,全部的源文件也都在此!
[外链图片转存中…(img-rdSf0Lp4-1718920984371)]