一文讲透大模型核心技术三要素:预训练、Transformer、Token

大模型的预训练

图片

预训练值得特别关注有2个原因:

  1. 前期预训练的成本高(GPT-4预训练成本超1亿美元)但效果好;后期的模型微调则投入产出比低;
  2. 预训练依赖大规模数据,企业长期积累的优质数据是核心竞争力(数据质量与大模型生成效果呈正相关)

数据集和训练数据

图片

Transformer算法

►Transformer 是什么? 变形金刚?

图片

►大语言模型是基于概率的模型,它基于训练数据中的统计信息,预测下一个词;

►由于基于概率去决策,即使是相同问题,每次回答都稍微不同

Transformer架构工作流程:

图片

►组成

Transformer 由 Encoder 和 Decoder 两个部分组成

►步骤

►►第一步:输入各维度向量,相加得到向量矩阵X(全局上下文理解)

获取输入句子的每一个单词的表示向量 X,X由单词的 Embedding(Embedding就是从原始数据提取出来的Feature) 和单词位置的 Embedding 相加得到向量矩阵X。

►►第二步:输入向量矩阵X,Encoder输出编码信息矩阵 C

►►第三步:输入编码信息矩阵 C,Decoder 输出预测性结果

编码信息矩阵 C 输入Decoder,根据当前解码过的单词 1~ i 解码下一个单词 i+1,最终得到预测性结果

token计算

图片

影响大模型 token 生成速率的采样概率参数有 max_token、top_k/top_p、temperature

图片

"大模型通过Token处理文本时,中文的Token-字符映射呈现阶梯式特征:

  1. 基础层:单个汉字=1 Token(例:‘我’)
  2. 复合层:双字词=1 Token(例:‘人工智能’)
  3. 成语层:四字短语=1 Token(例:‘守株待兔’)

最大上下文长度

图片

上下文是指大模型处理任务的时候,能够考虑的信息范围。

max_token指的是模型一次性能够接收的最大字符数或 token 数(如果输入的文本超过了这个限制,超出部分将被截断或者忽略,这就会导致上下文信息的丢失)。

Token概率采样策略

图片

Token统计器

在线统计:OpenAI Tokens 在线计算工具 - AIGC2D.com

图片

离线统计:

from typing import List, Dictimport tiktokenfrom aihub_service.model.request.ai_base_request import Messageclass TokenTracker:    """支持上下文Token统计的增强版"""    def __init__(self, model_name:str=""):        self.model_name = model_name        self._init_encoder()    def _init_encoder(self):        """初始化编码器"""        try:            self.encoding = tiktoken.encoding_for_model(self.model_name)            self.is_openai = True        except KeyError:            self.encoding = tiktoken.get_encoding("cl100k_base")            self.is_openai = False  # 非OpenAI模型可能使用不同规则    def _openai_message_tokens(self, message: Message) -> int:        """计算单条消息的Token(含OpenAI特殊格式)"""        # 官方计算规则:https://platform.openai.com/docs/guides/text-generation/managing-tokens        tokens_per_message = 4  # 每条消息的基础开销        tokens = tokens_per_message        tokens += len(self.encoding.encode(message.content))        if message.role:            tokens += len(self.encoding.encode(message.role)) + 1        return tokens    def count_context_tokens(self, context: List[Message]) -> int:        """统计上下文Token总数"""        if self.is_openai:            # OpenAI聊天模型特殊计算规则            tokens_per_reply = 3  # 每次回复的固定开销            total = sum([self._openai_message_tokens(msg) for msg in context])            total += tokens_per_reply            return total        else:            # 通用模型直接拼接文本计算            full_text = "\n".join([msg.content for msg in context])            return len(self.encoding.encode(full_text))    def predict_output_tokens(self, output_text: str) -> int:        """预测输出Token数"""        return len(self.encoding.encode(output_text))    def track_full_token_usage(            self,            input_text: str,            output_text: str,            context: List[Message] = None    ) -> Dict:        """完整使用统计(输入+输出+上下文)"""        context = context or []        # 统计各部分        context_tokens = self.count_context_tokens(context)        input_tokens = len(self.encoding.encode(input_text))        output_tokens = self.predict_output_tokens(output_text)        # 总消耗 = 上下文 + 本次输入 + 输出        total_tokens = context_tokens + input_tokens + output_tokens        return {            "input_tokens": input_tokens + context_tokens,            "output_tokens": output_tokens,            "total_tokens": total_tokens,        }

词嵌入、注意力机制、相似性比较

图片

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值