OpenAI上周发了一篇论文,重点聊了大家都挺感兴趣的话题:为什么大模型会有幻觉?
评测缺陷
举个例子:你现在参加一场考试,答对得1分,答错或不答都是0分。
在这种规则下,最佳策略是什么? 应该是碰到完全不会的题目,蒙一个答案。因为蒙对了血赚,蒙错了不亏。
这个模式正是今天绝大多数AI模型在面对的评测环境。
包括GPQA、MMLU-Pro、SWE-bench在内的众多热门评测基准,都是在用Binary Grading。
非对即错,如果模型回复IDK (I Don’t Know)这类表达不确定的回答,和错误的答案一样,都会被判为0分。
所以,模型通过RLHF等后训练,核心目标之一就是在这些基准上拿到高分。
为了最大化期望得分,模型会学到一个最优策略:永远不要承认自己不知道,给出一个看起来最可能对的答案去赌那1分。
他们整理了一张表,几乎所有我们熟悉的评测,都对IDK零分处理,甚至在WildBench的评分体系里,一个包含幻觉的还行的回答(5-6分)得分可能比一个诚实的IDK(3-4分)更高。
幻觉根源:预训练的原罪与后训练的放大
论文进一步从模型训练的两个阶段,剖析了幻觉的来源。
预训练阶段
在预训练阶段,模型学习的是海量文本的统计规律。
论文通过证明,即使训练数据完全正确,模型为了达到更好的Calibration,也必然会产生错误。
结论是:模型对那些在训练数据中仅出现过一次的事实产生幻觉的概率,与这些事实在数据中的占比直接相关。
简单来说,对于那些冷知识,模型天生就有一定的概率会猜错。
这是统计规律决定的,无法避免。
后训练阶段
问题在后训练阶段被急剧放大了。RLHF等对齐技术,本意是让模型变得更有用、更无害。但由于评测基准本身存在缺陷,对齐过程就变成了应试训练。
在预训练阶段那些不确定的知识点上,选择猜而不是不说,在MMLU、SWE-bench这些考试里得分更高。
于是,一个原本只是偶尔记岔的模型,被活活训练成了一个习惯性撒谎的老油条。
最终,我们得到的就是一个在所有问题上都表现得无比自信,但实际上可能正在一本正经胡说八道的模型。
如何打破僵局?
既然问题出在评测的上,那么解决方案也要从规则入手。
论文给出了一个提议:改造现有评测,引入明确的置信度阈值和错误惩罚机制。
别再用简单的0/1评分了,而是像某些更严格的考试一样,明确告诉模型:
请只在你有超过75%把握时回答。因为答错要倒扣3分(t/(1-t),这里t=0.75),答对得1分,回答我不知道得0分。”
在这种新规则下,模型的最佳策略就会发生改变。当它对一个答案的置信度低于75%时,最理性的选择就是回答我不知道,因为猜的风险(-3分)远大于潜在收益(+1分)。
最后
AI的幻觉问题,不止是技术问题,是一个由评测生态驱动的激励机制问题。
上周五Qwen-max发布,全面吊打所有闭源模型。
现在的模型,几乎都是跑分王。
我们又一次进入要靠实测体验来判断大模型能力的好坏的阶段了。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发