从零开始学大模型:30天高效学习计划与技能提升路径

2024年OpenAI吹响“大模型主导未来变革”的号角,掌握AI大模型技术已成为职业发展的关键突破口。本计划融合学习理论与实战路径,助您30天内系统掌握大模型核心技术。

第一阶段:基础筑基(第1-7天)

第1-3天:AI大模型认知与开发环境配置

  1. 核心概念学习(每日2小时)
    • 理解Transformer架构与注意力机制
    • 掌握预训练-微调范式差异
    • 学习大模型在NLP/CV领域的应用场景
  2. 开发环境搭建(每日1小时)
    • 安装Python 3.8+、CUDA 11.7
    • 配置PyTorch/TensorFlow框架
    • 部署Hugging Face Transformers库

第4-7天:核心组件实践

  1. 模型量化技术(每日3小时)
    • 对比量化/剪枝/蒸馏的优劣势
    • 实践AWQ量化方案解决outlier问题
    • 运行LLM.int8()推理加速实验
  2. 基础模型调用(每日2小时)
    • 使用BERT完成文本分类任务
    • 实现GPT-2的文本生成
    • 部署Hugging Face Pipeline

第二阶段:核心技术突破(第8-18天)

第8-12天:高效微调技术

  1. 微调方法实践(每日4小时)
    • 使用LoRA微调ChatGLM模型
    • 实现P-Tuning v2参数优化
    • 医疗数据领域适配实战
  2. 提示工程精要(每日1小时)
    • Chain-of-Thought提示设计
    • 多轮对话系统构建

第13-18天:企业级应用开发

  1. 项目开发实战(每日4小时)
    • 基于LangChain构建知识库问答系统
    • 开发电商虚拟试衣AI应用
    • 实现SD多模态文生图程序
  2. 性能调优(每日1小时)
    • 模型剪枝实战(移除20%参数)
    • RLHF奖励模型部署

第三阶段:高阶实战(第19-28天)

第19-23天:前沿模型解析

  1. 开源模型深度应用(每日4小时)
    • 精读LLaMA2论文并部署中文版
    • 复现Alpaca训练过程
    • GLM-130B多卡推理实践
  2. 论文带读训练营(每日1小时)
    • 解析《Attention is All You Need》
    • 精读PaLM技术报告

第24-28天:企业项目实战

三套完整项目闭环开发(每日5小时)

  1. 聊天机器人系统开发(Flask+React+LLaMA)
  2. 智能对话系统实现(包含意图识别模块)
  3. 大模型API服务化部署(Docker+K8s)

第四阶段:知识整合(第29-30天)

知识体系构建

  1. 整理技术笔记与代码库(GitHub归档)
  2. 构建个人作品集:
    • 技术博客(至少3篇实战解析)
    • 项目Demo视频展示
  3. 制定持续学习计划:
    • 每月精读2篇顶会论文
    • 参与Kaggle大模型竞赛

每日学习模板(高效执行建议)

时间段内容安排产出要求
8:00-10:00理论学习(论文/课程)思维导图笔记
10:30-12:00代码实践GitHub提交记录
14:00-16:00项目开发功能模块完成
16:30-18:00调试优化性能提升报告
20:00-21:00次日计划任务清单制定

学习资源包

  1. 必读论文
    • LLaMA: Open and Efficient Foundation Language Models
    • LoRA: Low-Rank Adaptation of Large Language Models
  2. 工具集
    • 模型部署:vLLM, Text Generation Inference
    • 可视化:Weights & Biases, TensorBoard
  3. 实战数据集
    • 医疗对话数据集:MedDialog
    • 中文指令数据集:COIG

结语:成为大模型时代的领跑者

通过这30天的150小时高强度训练,您将掌握从模型微调到企业级部署的全链路能力。正如大模型正在构建“AI基础设施”,这项技能将成为您职业发展的核心杠杆。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值