2025年AI 智能体赋能康养产业:全球应用场景与发展趋势深度研究

 人工智能(AI)等新技术与医疗深度融合,不仅使医疗行业数字化进程加速,还为完善智慧医疗生态奠定基础,为医疗诊断和健康养老带来了发展新机遇。养老是大健康产业的重要应用场景之一,AI智能体在养老领域的实践应用在解决我国养老服务供给不足、效率不高等方面发挥着积极作用。在AI智能体的浪潮下,大健康行业正处于高速发展的黄金期,展现出无限的潜力与活力。海内外AI智能体商业化持续演进,市场空间广阔,微软、谷歌、Salesforce、Zoom、百度、阿里、腾讯、字节等持续加码,推动AI Agent商业化落地。根据Markets and Markets预测,全球AI Agent市场将从2024年的51亿美元增长到2030年的471亿美元,年复合增长率达44.8%。

一、市场概况与发展背景

1.1 全球康养产业规模与 AI 应用市场空间

   随着全球人口老龄化加速,康养产业正迎来前所未有的发展机遇。根据最新市场研究,全球 AI 老年护理市场预计将从 2025 年开始展现强劲增长势头,到 2033 年达到 14.88 亿美元,年复合增长率 (CAGR) 高达 20.4%。这一增长主要受到全球老年人口增加、医疗成本上升以及 AI 技术进步的推动。AI 驱动的解决方案在康养领域的应用不仅提高了效率,降低了成本,还显著改善了老年人的生活质量。

 AI在康养领域的应用已从单纯的健康监测扩展到全方位的生活辅助、康复治疗和健康管理。据市场研究公司Virtue Market Research 预测,AI老年护理和医疗工具市场正在通过创新工具彻底改变老年人护理和医疗保健市场,这些工具用于监测、通过自动化简化健康管理、通过预测分析确保更安全的环境,以及实现可扩展的护理解决方案。

    在中国市场,AI 健康管理市场规模预计到 2027 年将达到 2.59 万亿元,年复合增长率超过 20%,各细分领域 AI 渗透率持续提升。这一数据反映了中国政府推动 "健康中国" 战略和应对人口老龄化挑战的决心,以及市场对 AI 赋能康养解决方案的迫切需求。

1.2 技术驱动与政策支持

    AI技术的快速发展,特别是大模型技术的突破,为康养产业带来了前所未有的变革机遇。大模型在自然语言处理、多模态理解和决策支持方面的能力,使得 AI 智能体能够更全面地理解和满足老年人的多样化需求。例如,DeepSeek 等大模型在医疗领域的应用,为康养 AI 智能体提供了强大的技术支撑,使其能够在健康管理、疾病预测和康复指导等方面发挥更大作用。

    政策层面,各国政府纷纷出台支持政策,推动 AI 技术在康养领域的应用。中国 "十四五" 健康老龄化规划推动建立 200 个国家级康养示范基地,医保支付范围新增 13 类康复项目。2025 年政府工作报告首次将智慧养老纳入 "新质生产力" 范畴,明确其作为 "应对老龄化的国家战略基础设施" 地位,目标从 "补短板" 转向 "引领全球养老创新"。

    在国际标准方面,国际电工委员会 (IEC) 正式发布了由中国牵头制定的养老机器人国际标准 (IEC 63310《互联家庭环境下使用的主动辅助生活机器人性能准则》),为全球各类养老机器人提供了更加贴合老年群体生理和行为特点的技术指引。这一标准的发布反映了中国在智慧养老领域的技术实力和全球影响力。

二、AI 智能体在康养领域的主要应用场景

2.1 居家养老场景

    居家养老是 AI 智能体应用最为广泛的场景之一,主要聚焦于安全监测、生活辅助和健康管理三个方面。

   安全监测方面,无感监测技术正成为主流。毫米波雷达监测系统已被纳入政府采购目录 (单价补贴 50%),在上海虹口区部署了 10 万套毫米波床垫,使夜间跌倒事故减少 67%。云米 AI 心肺监测雷达联动智能空调,能够发现呼吸暂停并自动唤醒老人,同时推送预警信息。华为毫米波雷达监测系统实现夜间异常起身识别,误报率低于 0.1%,这些技术大大提高了独居老人的居家安全性。

    生活辅助领域,AI 智能体正从简单的语音助手向更复杂的生活助手发展。国脉科技基于居家养老场景的 AI 智能体已于 2025 年 6 月底正式发布,该智能体能够根据长者的健康状况、兴趣爱好以及社区的动态数据为其推荐合适的活动,并通过 "国脉币" 激励机制鼓励长者参与社区活动。"国脉币" 不仅可以兑换社区的商品、服务等实体权益,还可用于社区治理,让长者以 "主人公" 的身份参与到社区的建设中,真正实现老有所为的幸福感。

    健康管理方面,国内信息通信技术外包服务提供商国脉科技推出的 AI 居家养老智能体,通过融合身联网 (IoB) 感知技术与人工智能算法,构建了居家养老场景下的精准健康管理方案。该方案不仅满足长者的健康需求,还注重其精神层面的需求,强调终身学习、代际交流等理念,让长者融入充满活力的社区环境。

此外,云澎科技的 AI 健康未来舱采用无感检测技术,3 分钟即可生成包含十余项指标的个人健康档案,为居家老人提供了便捷的健康监测手段。AI 桌面 (陪伴) 机器人则实现了中医四诊合参的智能化辨证,其创新程度和展现方式吸引了不少老年人前来互动体验。

2.2 社区康养场景

   社区康养是连接居家养老和机构养老的重要纽带,AI 智能体在这一场景中的应用主要体现在健康监测、社交互动和资源整合三个方面。

    健康监测方面,社区康养驿站正成为 AI 健康管理的重要节点。山东济南市舜华社区的 AI 康养服务驿站引入了智美康民公司自主研发的 "太可艾" 智能艾灸机器人及按摩机器人。这些智能理疗机器人融合了人工智能、生物力学和多维力传感技术,能够针对社区居民的体质数据和需求,提供推拿、揉腹、按摩、艾灸等中医康养服务。通过强大的 AI 算法,机器人能快速精准地识别人体经络穴位,并生成用户健康数据档案,定制个性化理疗方案。

    社交互动是社区康养的另一重要功能,AI 智能体在促进老年人社会参与方面发挥着积极作用。成都 "乐龄创作营" 通过 AI 技术辅助老年人创作短视频,产出的爆款短剧《奶奶的元宇宙》全网播放量破亿,参与老人月均增收 3200 元。这类应用不仅增加了老年人的收入,还提升了他们的社会价值感和生活满意度。

    资源整合方面,多地正在打造 "看得见" 的智慧养老生活。北京市发展改革委表示,北京首批 9 个适老化改造多功能公共样板间已有 3 个建成开放,下一步将加快人工智能、服务机器人等应用,提升样板间智能化水平。同时,上海虹口区驿站引入 "脑机接口运动训练系统",通过神经信号分析定制帕金森患者康复计划,展示了 AI 技术在社区康复中的创新应用。

2.3 康复治疗场景

    康复治疗是 AI 智能体应用的重要领域,特别是在物理治疗、认知康复和慢性病管理方面取得了显著进展。

    物理治疗领域,AI 驱动的康复机器人正成为主流解决方案。海尔智慧康养在 2025 上海国际养老辅具及康复医疗博览会上展示的康复机器人,能够根据用户身体状况提供个性化康复方案。麦迪科技与傅利叶智能、中科行智合作开发的医疗康养服务机器人,已于 2024 年 4 月签署协议,计划在医院和养老院进行实测,目标于 2025 年实现产品落地。

    认知康复方面,AI 技术正在改变传统的治疗模式。华鹊景认知康复机器人系统部署 DeepSeek-R1 模型,通过眼动追踪和语音交互实现阿尔茨海默病风险评估。上海虹口区驿站引入的 "脑机接口运动训练系统",通过神经信号分析定制帕金森患者康复计划,为神经系统疾病患者提供了更精准的康复方案。

    慢性病管理领域,AI 智能体正帮助老年人更好地管理糖尿病、高血压等常见疾病。同济医院积极推进国家医学中心前沿数字中心建设,推动生物医学大数据的应用与创新,同时通过全面本地化部署 DeepSeek 人工智能大模型,在住院医疗、文书辅助书写、门诊患者健康宣教等四大核心场景实现了落地应用。

此外,耐鼎 AI 失能护理机器人搭配百福睡眠系统,实现了生命体征监测与自动按摩护理,替代了人工间隔护理工作,大大减轻了护理人员的工作负担。

2.4 健康管理场景

    健康管理是 AI 智能体应用最为广泛的场景之一,涵盖了健康监测、健康干预和健康决策支持三个层面。

    健康监测方面,可穿戴设备和物联网技术的发展为 AI 健康管理提供了丰富的数据来源。华为 AI 辅助康养传感器协同智能穿戴设备,能够深度剖析心率、血压等数据,精准识别潜在健康隐患。苏州怡养老年公寓为 200 位长者配备毫米波生物雷达手环,实现非接触式心率和呼吸监测,夜间突发心脏病预警准确率达 91%。

    健康干预领域,AI 智能体正从单一的健康提醒向个性化健康干预发展。腾讯健康 "三舅健康管家" 智能体实现体检报告智能解读与用药指导,覆盖健康自检、药品查询等场景。云米 AI 心肺监测雷达联动智能空调,发现呼吸暂停自动唤醒老人并推送预警信息,实现了健康风险的实时干预。

    健康决策支持方面,AI 智能体能够为老年人及其家庭提供专业的医疗建议。四世同堂照护平台以 DeepSeek 大模型作为核心驱动力,通过多模态数据的采集与智能分析,创新性地推出了 "小堂私人 AI 医生" 服务,深入探索医疗 AI 技术在养老服务中的赋能与场景应用。该平台借助 AI 技术实现了智能化管理,从人员陪诊服务、就医服务、居家照护、医院陪护到服务质量监控,系统都能高效运作,真正将医康养结合的理念融入服务终端,显著提升了服务效率和质量。

此外,腾讯健康通过 AI 技术做了许多积极探索,面向患者提供健康方面的自由问答以及健康智诊,并支持智能问药、健康报告解读等多个场景。这些应用大大降低了老年人获取医疗建议的门槛,提高了医疗资源的利用效率。

三、AI 智能体技术演进与应用创新

3.1 大模型驱动的康养 AI 智能体

    大模型技术的突破为康养 AI 智能体提供了强大的技术支撑,特别是在自然语言理解、多模态融合和个性化服务方面。

    自然语言理解能力的提升使 AI 智能体能够更好地与老年人进行沟通。DeepSeek 等大模型在医疗领域的应用,为康养 AI 智能体提供了专业的医学知识支持,使其能够更准确地理解和回应用户的健康咨询。例如,腾讯健康 "三舅健康管家" 智能体能够理解自然语言提问,并提供专业的健康建议和用药指导。

    多模态融合技术使 AI 智能体能够综合分析多种来源的信息,为老年人提供更全面的健康评估。四世同堂照护平台以 DeepSeek 大模型为核心,通过多模态数据的采集与智能分析,实现了从人员陪诊服务、就医服务到居家照护的全流程智能化管理。该平台能够融合医疗数据、生活习惯和环境信息,为老年人提供个性化的健康管理方案。

    个性化服务方面,大模型技术使 AI 智能体能够根据用户的历史数据和偏好提供定制化服务。国脉科技的 AI 居家养老智能体能够根据长者的健康状况、兴趣爱好以及社区的动态数据为其推荐合适的活动,并通过 "国脉币" 激励机制鼓励长者参与社区活动。这种个性化服务大大提高了老年人对 AI 智能体的接受度和使用频率。

3.2 具身智能在康养机器人中的应用

    具身智能 (Embodied AI) 是指将 AI 技术与物理实体相结合,使机器人能够在真实环境中感知、理解和执行任务。这一技术在康养机器人领域的应用正在改变传统的养老服务模式。

   灵巧操作能力使康养机器人能够完成更加复杂的护理任务。达闼和松霖机器人建立战略合作关系后,正共同探索人形机器人等垂直场景应用,并重点研发和推广一款配置 "灵巧手" 的洗护康养功能的人形机器人。这种机器人能够帮助老年人完成如梳头、穿衣、洗漱等日常生活活动,提高他们的生活自理能力。

   环境适应能力是康养机器人实用化的关键。海尔智慧康养展示的康复机器人能够根据用户身体状况提供个性化康复方案,适应不同康复阶段的需求。麦迪科技与傅利叶智能、中科行智合作开发的医疗康养服务机器人,计划在医院和养老院进行实测,以优化其在真实环境中的性能。

   人机协作方面,康养机器人正从单纯的执行工具向合作伙伴转变。华鹊景认知康复机器人系统通过眼动追踪和语音交互实现阿尔茨海默病风险评估,不仅能够执行预设的康复程序,还能与患者进行互动,提高康复效果。

3.3 数据分析系统在康养管理中的应用

    数据分析系统是康养 AI 智能体的 "大脑",能够从海量数据中挖掘有价值的信息,为健康决策提供支持。

   健康风险预测是数据分析系统的核心功能之一。通过分析历史健康数据,AI系统能够预测疾病发生的可能性,提前采取干预措施。例如,苏州怡养老年公寓使用的毫米波生物雷达手环,能够通过分析心率和呼吸数据,提前预警夜间突发心脏病,准确率达 91%。

    个性化健康管理是数据分析系统的另一重要应用。华为 AI 辅助康养传感器协同智能穿戴设备,能够深度剖析心率、血压等数据,精准识别潜在健康隐患。这些系统能够根据用户的具体情况,提供个性化的健康建议和干预措施。

    资源优化配置方面,数据分析系统能够帮助养老机构提高运营效率。天与养老数字化平台整合医保数据,在浙江试点实现护理资源智能调度,优化了护理资源的分配,提高了服务效率。

    此外,AI 技术还能够帮助医生更准确地诊断和治疗疾病。华中科技大学同济医学院附属同济医院通过全面本地化部署 DeepSeek 人工智能大模型,在住院医疗、文书辅助书写、门诊患者健康宣教等四大核心场景实现了落地应用,提高了医疗服务的质量和效率。

四、AI 智能体在康养领域的商业模式创新

4.1 "设备 + 服务" 订阅制模式

    "设备 + 服务" 订阅制是康养 AI 智能体最常见的商业模式之一,通过将硬件设备与持续的服务相结合,为用户提供全方位的健康管理解决方案。

  健康监测设备订阅模式正在成为主流。政府鼓励 "新型消费发展",可穿戴设备(如实时监测血糖的智能手环)与家庭健康数据平台将普及,企业可通过展会推广 "设备 + 服务" 订阅制模式。这种模式通常包括智能监测设备和定期的健康数据分析服务,用户按月或按年支付订阅费用。

   康复设备租赁模式为养老机构和家庭提供了更灵活的选择。海尔智慧康养展示的康复机器人和智能二便护理机器人等产品,不仅可以购买,还可以通过租赁方式使用。这种模式降低了初始投入成本,使更多养老机构能够采用先进的康复设备。

    居家照护服务领域,"设备 + 服务" 模式正在改变传统的养老服务提供方式。国脉科技的 AI 居家养老智能体不仅提供智能设备,还包括持续的健康管理服务和社区活动参与机会。这种全方位的解决方案能够更好地满足老年人的多样化需求。

4.2 政府 - 企业 - 社会三方合作模式

    政府 - 企业 - 社会三方合作是推动 AI 智能体在康养领域应用的重要模式,通过各方优势互补,实现资源整合和效益最大化。

    政府购买服务模式为普惠型 AI 康养服务提供了资金支持。政府采购目录中已将毫米波雷达等无感监测设备纳入,并提供 50% 的单价补贴。上海虹口区部署 10 万套毫米波床垫,使夜间跌倒事故减少 67%,这一项目正是通过政府购买服务的方式实现的。

    政企合作开发模式加速了 AI 康养技术的产业化进程。安馨康养与小度科技于 2025 年 3 月 20 日签署战略合作协议,共同打造全国首个 AI 康养场景实验室,推动人工智能技术与康养产业在居家养老数据平台、智慧健康空间和康养旅居等场景的深度融合。这种合作模式能够充分发挥企业的技术优势和养老机构的场景优势,加速创新产品的落地。

    社会力量参与方面,"时间银行 3.0" 模式正在全国推广。志愿服务积分可兑换异地养老床位使用权,2025 年目标注册志愿者突破 2000 万人。这种模式通过激励机制,调动了社会力量参与养老服务的积极性,补充了专业服务的不足。

    此外,PPP 模式升级也为智慧养老项目提供了新的融资思路。政府以数据资产入股智慧养老项目(如北京市以 300 万老人健康数据入股 AI 健康监测公司),收益用于反哺普惠服务。这种模式既发挥了政府的数据优势,又引入了企业的技术和资金,实现了共赢。

4.3 数据驱动的精准健康管理模式

    数据驱动的精准健康管理模式是 AI 智能体在康养领域的创新应用,通过分析用户的健康数据,提供个性化的健康管理方案。

    健康数据平台是这一模式的基础。政府推动建立 "国家养老数据中台",用于疫情预警、资源调配等宏观决策。同时,强制推行《智慧养老数据互联国家标准》(GB/T 40256-2025),要求企业开放 API 接口,打破民政、卫健、医保数据壁垒。

   个性化健康干预是数据驱动模式的核心应用。腾讯联合协和医院推出 "银发 GPT",能够提供个性化健康建议,准确率达 92%。这种基于大数据和 AI 技术的健康干预方案,能够根据用户的具体情况,提供精准的健康建议和干预措施。

    疾病风险预测方面,数据驱动的模式正在改变传统的医疗干预方式。通过分析大量的健康数据,AI系统能够预测疾病发生的可能性,提前采取干预措施。例如,云米 AI 心肺监测雷达能够发现呼吸暂停并自动唤醒老人,大大降低了夜间突发疾病的风险。

    此外,泛华康养服务引入 AI 人工智能,推出 "蓝十字智慧居家养老综合解决方案",以三大保障为居家养老保驾护航。这种基于数据分析的综合解决方案,能够全方位保障老年人的健康和安全。

五、全球 AI 康养市场投资分析与趋势

5.1 投资规模与热点领域

    AI康养领域正吸引越来越多的投资,成为科技投资的新热点。根据最新数据,医疗康养融资事件规模已超十亿,银发经济赛道获拓宽,康养机器人、互联网医疗、医药器械、智能监测等多领域获资本青睐。从机器人研发到互联网居家养老生态构建,从疾病诊疗技术突破到健康监测创新,资本注入推动了银发经济领域的全链条升级。

   在全球范围内,AI老年护理和医疗工具市场正在通过创新工具彻底改变老年人护理和医疗保健市场。这些工具用于监测、通过自动化简化健康管理、通过预测分析确保更安全的环境,以及实现可扩展的护理解决方案。据预测,AI驱动的老年人护理解决方案市场规模将在未来几年呈现指数级增长,到 2029 年达到 749.5 亿美元,年复合增长率 (CAGR) 为 23.88%。

投资热点领域主要集中在以下几个方面:

  1.  AI 健康监测设备

        如毫米波雷达、智能手环等无感监测设备,市场需求旺盛。

2. 康复机器人

    能够提供个性化康复方案的机器人系统,受到资本青睐。

3. 健康管理平台

    基于 AI 的健康数据分析平台,为用户提供个性化健康建议。

4. 智能养老社区

    集成多种 AI 技术的智慧养老社区解决方案。

5. 医疗 AI 辅助诊断

    用于辅助医生诊断和治疗的 AI 系统,特别是在慢性病管理领域。

例如,Cera Care 等公司正处于将 AI 整合到老年护理服务的前沿。Cera 开发了 AI 支持的工具,能够预测和预防老年人和弱势群体的住院治疗,减少患者住院率高达 70%,每天为英国政府和 NHS 节省 100 万英镑。2025 年 1 月,Cera 筹集了 1.5 亿美元,进一步扩展其 AI 主导的家庭医疗模式,估值超过 10 亿美元。

5.2 区域投资格局分析

   全球AI康养投资呈现出明显的区域差异,不同地区因其技术基础、政策环境和市场需求的不同,形成了各具特色的发展格局。

    亚太地区正成为 AI 康养投资的新热点。2025 年第一季度,东南亚地区的科技初创企业融资激增 30.79%,达到 9.09 亿美元,较 2024 年第四季度的 6.95 亿美元有强劲反弹。这一复苏反映了投资者对解决紧迫区域和全球挑战的科技企业的信心日益增强,特别是在医疗保健和老年护理创新方面。在整个亚太地区,初创企业正在推出 AI驱动的诊断工具、远程监测工具和可持续护理模式,将该地区定位为老龄化社会和气候适应型卫生系统创新的关键驱动力。

    欧洲地区在 AI 伦理和数据隐私方面有严格的法规,但也在积极推动 AI 在康养领域的应用。欧盟 AI 法案 (EU AI Act) 对医疗 AI 系统有明确规定,将其分为不可接受风险 (禁止)、高风险、有限风险和最小风险四类。对于医疗设备行业,AI 法案特别有影响力。根据医疗器械法规 (MDR) 分类为 I 类以上或根据体外诊断法规 (IVDR) 分类为 A 类以上的 AI 系统被视为 AI 法案下的高风险 AI 系统。这一分类伴随着制造商必须应对的若干严格要求,这些要求在现有的 MDR 和 IVDR 框架下可能已经很熟悉。

    北美地区特别是美国,在AI 技术创新和商业化应用方面处于领先地位。美国 FDA 已经批准了多种 AI 医疗产品,包括用于疾病诊断和预测的系统。美国市场对创新 AI 康养解决方案的接受度高,风险投资活跃,为初创企业提供了良好的发展环境。

    中国市场正成为全球AI康养投资的重要力量。中国政府高度重视 AI 在康养领域的应用,出台了一系列支持政策。例如,2025 年政府工作报告首次将智慧养老纳入 "新质生产力" 范畴,明确其作为 "应对老龄化的国家战略基础设施" 地位。同时,中国企业在 AI 康养领域的创新也非常活跃,如国脉科技、海尔智慧康养、麦迪科技等企业都在积极布局 AI 康养市场。

5.3 未来投资趋势预测

    基于当前市场动态和技术发展趋势,AI 康养领域的未来投资将呈现以下几个趋势:

  1.  投资规模持续扩大

        随着全球人口老龄化加速和 AI 技术的不断进步,AI 康养市场将持续扩大,吸引更多投资。预计到 2029 年,AI 驱动的老年人护理解决方案市场规模将达到749.5 亿美元,年复合增长率为 23.88%。

2. 投资重点转向应用场景落地

    投资者将更加关注 AI 技术在具体康养场景中的实际应用效果,而非单纯的技术先进性。能够解决实际问题、提高护理效率、改善老年人生活质量的应用场景将受到更多关注。

3. 区域投资格局多元化

   亚太地区特别是中国市场的投资比重将增加,形成与欧美市场并驾齐驱的格局。同时,区域性的创新中心将逐渐形成,如粤港澳大湾区、长三角等地区有望成为 AI 康养创新的重要基地。

4. 产业链整合加速

    从上游的传感器、芯片等硬件供应商,到中游的 AI 算法和平台提供商,再到下游的应用场景和服务提供商,产业链整合将加速,形成更加完善的产业生态。

5. 跨界融合成为主流

    AI康养将与物联网、大数据、5G 等技术深度融合,形成更加全面的解决方案。同时,康养与医疗、保险、房地产等行业的跨界合作也将增多,创造更多商业模式创新。例如,2025年国际消费电子展 (CES 2025) 预计将展示大量数字健康解决方案,展示技术使老年人能够在自己家中优雅地 aging in place。这表明消费电子巨头也在积极布局 AI 康养市场,进一步推动行业发展。

六、政策环境与监管框架分析

6.1 中国AI康养政策体系

   中国高度重视AI在康养领域的应用,已形成较为完善的政策体系,从顶层设计到具体实施,全方位支持 AI 康养产业发展。

    国家战略层面,首次将智慧养老纳入 "新质生产力" 范畴,明确其作为 "应对老龄化的国家战略基础设施" 地位,目标从 "补短板" 转向 "引领全球养老创新"。量化指标包括:2025年底实现智慧养老设备渗透率城市 80%、农村 40%,AI健康监测系统覆盖 1.2 亿老年人,数据互联互通率达 95%。

   重点领域支持方面,政策聚焦失能失智照护和慢性病管理。新增财政专项拨款 300 亿元,用于认知症AI干预设备研发(如 VR 怀旧疗法系统)和家庭护理机器人补贴。同时,强制要求三甲医院与社区养老机构共享糖尿病、高血压等大数据模型,实现精准用药指导。

  技术创新政策推动了AI康养技术的研发和应用。工信部、教育部、市场监管总局印发的《轻工业数字化转型实施方案的通知》提出,重点培育智能家居、智能穿戴、智能骑行、智慧养老等消费端场景。此外,建立国家级养老 AI 算法开源平台,推动技术共享和创新。

   支付体系改革方面,长期护理保险全面扩容,参保年龄从 60 岁降至 55 岁,农村地区财政补贴个人缴费比例提至 90%。同时,鼓励开发 "智慧养老设备险",涵盖机器人故障、数据泄露等风险,保费补贴 30%。

   数据安全与伦理规范是政策关注的重点。《养老数据安全法》草案规定生物特征数据存储不得超过 72 小时,违规企业最高处罚年营收 10%。同时,设立省级养老 AI 伦理委员会,禁止情感陪护机器人诱导老人进行财产处置。

6.2 欧盟AI法案对康养AI的影响

    欧盟 AI 法案 (EU AI Act) 是全球首个全面的 AI 监管框架,对 AI 在康养领域的应用有重要影响,特别是在高风险 AI 系统的定义和监管方面。

    高风险 AI 系统定义方面,欧盟 AI 法案将 AI 系统分为四类:不可接受风险 (禁止)、高风险、有限风险和最小风险。对于医疗设备行业,根据医疗器械法规 (MDR) 分类为 I 类以上或根据体外诊断法规 (IVDR) 分类为 A 类以上的 AI 系统被视为 AI 法案下的高风险 AI 系统。这意味着许多医疗 AI 系统,特别是那些用于诊断、治疗或监测的系统,将受到严格监管。

    MDCG 2025-6 指南进一步明确了 AI 法案对医疗设备软件 (MD SW) 和医疗设备人工智能 (MDAI) 的适用范围。该文件澄清,如 MD CG 2019-11 所定义的 MD SW,如果符合AI系统的定义,则属于AI法案的范围。这为医疗AI系统的监管提供了更具体的指导。

   合规要求方面,高风险AI系统的提供者必须遵守一系列严格要求,包括技术文档、透明度、风险管理、数据质量、人类监督等。这些要求可能已经在现有的 MDR 和 IVDR 框架下很熟悉,但 AI 法案增加了额外的合规负担。

    实施时间表方面,AI法案的核心要求将于 2026 年 8 月 2 日全面生效。这意味着大多数AI法案的义务,特别是对于部署高风险 AI 系统的义务,将在生效后24个月成为强制性要求。到这个日期,新高风险 AI 的提供者必须在将系统投放欧盟市场前遵守该法案。

   健康领域的禁止应用方面,2025 年 2 月 2 日,欧盟 AI 法案关于使用不可接受的人工智能实践的第一部分生效。欧盟委员会发布了关于解释第 5 条的指南草案,其中描述了被禁止的 AI 应用。其中许多涉及医疗保健相关用例。这为医疗 AI 的应用划定了明确的边界。

6.3 全球AI康养政策趋势比较

    全球主要国家和地区在 AI 康养政策方面呈现出不同的特点和趋势,以下是主要区域的比较分析:

   中国政策特点:中国政策强调顶层设计和全面推进,将AI康养视为应对人口老龄化的国家战略。政策内容涵盖技术研发、应用推广、产业发展、支付体系和数据安全等多个方面,形成了较为完整的政策体系。中国政策的一个显著特点是设定了明确的量化指标,如 2025 年底实现智慧养老设备渗透率城市 80%、农村 40%,这为政策实施提供了明确的目标。

    欧盟政策特点:欧盟政策强调风险监管和伦理规范,通过 AI 法案对 AI 系统进行分类监管,特别是对高风险 AI 系统实施严格的合规要求。欧盟政策的一个显著特点是将 AI 伦理和数据隐私保护放在首位,这可能会在一定程度上限制 AI 技术的应用范围,但也为建立可信 AI 提供了保障。此外,欧盟还发布了关于医疗 AI 应用的指南,明确了禁止的应用场景。

    美国政策特点:美国政策强调创新和市场驱动,FDA 通过多种途径支持 AI 医疗产品的开发和上市,包括预认证计划、数字健康预认证计划等。美国政策的一个显著特点是注重市场机制,鼓励企业通过创新满足市场需求,同时通过法规确保产品安全有效。此外,美国还在医疗保险覆盖方面积极探索 AI 应用,如通过 AI 优化创新药研发、改革医保支付方式等。

    亚太其他国家政策特点:日本、韩国等亚太国家也在积极推动 AI 在康养领域的应用。日本政策强调技术创新和适老化改造,通过 "社会 5.0" 战略推动 AI 技术与社会需求的融合。韩国政策则注重产业发展和国际合作,通过政府主导的研发项目推动AI康养技术的发展。

    政策趋势比较:尽管各地区政策侧重点不同,但也呈现出一些共同趋势:一是都将 AI 康养视为应对人口老龄化的重要手段;二是都在加强对 AI 系统的监管,特别是在医疗健康领域;三是都在推动 AI 技术与现有医疗和养老体系的融合;四是都在探索 AI 康养的商业模式和支付机制创新。

七、未来发展趋势与战略建议

7.1 技术发展趋势

    AI 智能体在康养领域的技术发展将呈现以下趋势:

    多模态融合技术深化:未来的康养 AI 智能体将更加注重多模态数据的融合,包括文本、图像、语音、生理信号等多种信息的综合分析。这将使AI系统能够更全面地理解用户需求,提供更精准的服务。例如,DeepSeek 等大模型在医疗领域的应用,为康养 AI 智能体提供了强大的技术支撑,使其能够在健康管理、疾病预测和康复指导等方面发挥更大作用。

    具身智能技术成熟:随着机器人技术和 AI 技术的发展,具身智能将在康养领域得到更广泛应用。未来的康养机器人将不仅能够执行预设的任务,还能够与环境进行交互,理解用户意图,提供更加自然和人性化的服务。例如,海尔智慧康养展示的康复机器人和智能二便护理机器人等产品,通过 AI 技术实现了与用户的自然交互。

   边缘计算与物联网结合:为了满足实时性和隐私保护的要求,边缘计算将与物联网技术结合,形成分布式的康养AI系统。这将使部分数据处理在本地设备上完成,减少数据传输需求,提高系统响应速度,同时保护用户隐私。例如,华为 AI 辅助康养传感器协同智能穿戴设备,能够在本地进行部分数据处理,实现实时健康监测。

    个性化与主动干预:未来的康养 AI 智能体将更加注重个性化服务和主动干预。通过分析用户的历史数据和行为模式,AI系统能够预测潜在风险,提前采取干预措施,预防疾病发生。例如,云米AI心肺监测雷达能够发现呼吸暂停并自动唤醒老人,大大降低了夜间突发疾病的风险。

   数字孪生技术应用:数字孪生技术将在康养领域得到应用,通过创建老年人的数字模型,模拟不同健康干预措施的效果,为个性化健康管理提供决策支持。例如,浙江乌镇实现居家老人全生命周期数字化管理,通过数字孪生技术为老年人提供个性化的健康管理方案。

7.2 市场发展趋势

    AI 智能体在康养领域的市场发展将呈现以下趋势:

    市场规模持续扩大:随着全球人口老龄化加速和 AI 技术的不断进步,AI 康养市场将持续扩大。预计到 2029 年,AI 驱动的老年人护理解决方案市场规模将达到749.5亿美元,年复合增长率23.88%。中国市场的增长尤为迅速,AI 健康管理市场规模预计到 2027年将达到 2.59 万亿元,年复合增长率超过 20%。

   应用场景深度拓展:AI智能体在康养领域的应用场景将从目前的健康监测、生活辅助等基础功能,向更复杂的医疗诊断、康复治疗、心理健康等领域拓展。例如,华鹊景认知康复机器人系统通过眼动追踪和语音交互实现阿尔茨海默病风险评估,展示了AI技术在认知康复领域的应用潜力。

    商业模式创新加速:随着市场的成熟,AI 康养领域的商业模式将更加多元化。除了传统的产品销售模式外,"设备 + 服务" 订阅制、政府购买服务、保险合作等模式将得到广泛应用。例如,政府鼓励 "新型消费发展",可穿戴设备与家庭健康数据平台将通过 "设备 + 服务" 订阅制模式推广。

    产业链整合加速:AI 康养产业链将从分散走向整合,形成更加完善的产业生态。上游的传感器、芯片等硬件供应商,中游的 AI 算法和平台提供商,下游的应用场景和服务提供商将加强合作,共同推动产业发展。例如,麦迪科技与傅利叶智能、中科行智合作开发医疗康养服务机器人,体现了产业链上下游企业的合作趋势。

   区域市场差异化发展:不同区域市场将根据自身特点形成差异化的发展路径。欧洲市场注重伦理规范和数据隐私,中国市场注重政策支持和规模效应,美国市场注重技术创新和商业模式创新。例如,欧盟 AI 法案对高风险 AI 系统实施严格监管,而中国则设定了明确的量化指标推动智慧养老发展。

7.3 战略建议

    基于对 AI 智能体在康养领域应用的全面分析,为不同参与方提供以下战略建议:

对技术研发企业的建议

  1.  聚焦场景需求

       技术研发应紧密围绕康养场景的实际需求,解决养老服务中的痛点问题,如跌倒风险、慢性病管理、认知障碍等。例如,华鹊景认知康复机器人系统针对阿尔茨海默病风险评估的需求开发,取得了良好的应用效果。

2. 加强多技术融合

   将AI技术与物联网、机器人、边缘计算等技术融合,形成完整的解决方案。例如,海尔智慧康养的 "1+5+N" 全场景解决方案,融合了 AI 技术与物联网、机器人等技术。

3. 重视适老化设计

   在技术研发过程中,应充分考虑老年人的生理和心理特点,设计简单易用、安全可靠的交互界面和操作流程。例如,北京首批 9 个适老化改造多功能公共样板间将加快人工智能、服务机器人等应用,提升样板间智能化水平。

对产品开发企业的建议

  1.  采用模块化设计

       产品设计应采用模块化架构,便于根据不同场景和用户需求进行灵活配置和扩展。例如,国脉科技的 AI 居家养老智能体能够根据长者的健康状况、兴趣爱好以及社区的动态数据提供个性化服务。

2. 注重用户体验

   产品开发应以人为本,注重用户体验,通过用户测试和反馈不断优化产品功能和性能。例如,海尔智慧康养的产品通过老年人的亲身体验和反馈进行优化,得到了 "真正懂我们老年人需求" 的评价。

3. 构建开放生态

 通过开放API和开发者平台,吸引更多合作伙伴参与产品生态建设,丰富应用场景和服务内容。例如,建立国家级养老AI算法开源平台,推动技术共享和创新。

对投资决策方的建议

  1.  关注细分领域龙头

       在投资决策中,应优先关注各细分领域的龙头企业,这些企业通常具有技术优势、市场份额和品牌影响力。例如,Cera Care 在 2025 年 1 月筹集了 1.5 亿美元,估值超过 10 亿美元,成为该领域的领军企业。

2. 重视商业模式创新

   投资应关注企业的商业模式创新能力,特别是能够实现可持续盈利的创新模式。例如,"设备 + 服务" 订阅制模式为企业提供了持续的收入来源。

3. 布局全产业链

    为降低投资风险,应考虑在 AI 康养产业链的不同环节进行布局,包括上游的硬件设备、中游的算法平台和下游的应用服务。例如,麦迪科技与傅利叶智能、中科行智合作开发医疗康养服务机器人,布局了产业链的多个环节。

对政策制定者的建议

  1.  完善法规标准体系

        应加快制定 AI 康养领域的法规标准,明确技术要求、安全规范和伦理准则,为产业发展提供良好的制度环境。例如,中国已发布《智慧养老数据互联国家标准》(GB/T 40256-2025),推动数据互联互通。

2. 加强跨部门协同

   康养涉及医疗、养老、保险、科技等多个领域,政策制定应加强跨部门协同,形成政策合力。例如,国家医保局正在积极探索高价值应用场景,如通过 AI 优化创新药研发、改革医保支付方式等。

3. 推动国际合作

   应加强国际合作,共同应对人口老龄化挑战,分享经验和技术,推动全球 AI 康养产业发展。例如,中国牵头制定的养老机器人国际标准 (IEC 63310) 为全球各类养老机器人提供了技术指引。

八、结论与展望

8.1 核心发现

   通过对AI智能体在康养领域应用的全面分析,我们得出以下核心发现:

  1. 应用场景多元化

      AI智能体在康养领域的应用已覆盖居家养老、社区康养、康复治疗、健康管理等多个场景,形成了多元化的应用格局。从简单的健康监测到复杂的康复治疗,AI 技术正在全面提升康养服务的质量和效率。

2. 技术融合加速

   AI技术与物联网、机器人、大数据等技术的融合正在加速,形成更加全面的解决方案。大模型技术的突破为康养 AI 智能体提供了强大的技术支撑,使其能够在自然语言理解、多模态融合和个性化服务方面取得突破。

3. 商业模式创新

    "设备 + 服务" 订阅制、政府 - 企业 - 社会三方合作、数据驱动的精准健康管理等创新商业模式正在形成,为 AI 康养产业发展提供了新的动力。

4. 投资热度上升

    全球AI康养市场投资热度持续上升,预计到 2029 年,AI 驱动的老年人护理解决方案市场规模将达到749.5亿美元,年复合增长率为 23.88%。中国市场的增长尤为迅速,AI健康管理市场规模预计到 2027 年将达到 2.59 万亿元。

5. 政策环境优化

    各国政府纷纷出台支持政策,推动 AI 技术在康养领域的应用。中国将智慧养老纳入 "新质生产力" 范畴,欧盟通过 AI 法案对高风险 AI 系统实施监管,美国则注重创新和市场驱动。

8.2 未来展望

展望未来,AI 智能体在康养领域的发展将呈现以下趋势:

    从辅助工具向合作伙伴转变:未来的康养 AI 智能体将不再仅是简单的辅助工具,而是能够与人类建立情感连接、提供全方位支持的合作伙伴。这将使 AI 系统能够更好地满足老年人的情感需求和社会参与需求。

   从单点应用向全流程服务拓展:AI 智能体的应用将从单一功能的健康监测或生活辅助,向覆盖预防、诊断、治疗、康复、健康管理的全流程服务拓展。例如,海尔智慧康养的 "1+5+N" 全场景解决方案,覆盖健康、卫浴、睡眠、出行、康复五大核心场景。

   从城市向农村延伸:随着技术普及和成本降低,AI 康养解决方案将逐步从城市向农村地区延伸,为更广泛的老年人群体提供服务。中国政府已设定目标,到2025年底实现智慧养老设备渗透率40%。

    从硬件主导向数据驱动转变:未来的 AI 康养将更加注重数据的价值,通过对海量健康数据的分析和挖掘,实现精准健康管理和疾病预测。

   从区域试点向全球协同发展:AI康养将从区域性试点项目向全球协同发展转变,通过国际合作和标准制定,推动全球AI康养产业的健康发展。例如,中国牵头制定的养老机器人国际标准为全球各类养老机器人提供了技术指引。

8.3 行动呼吁

    基于上述分析,我们呼吁各相关方采取以下行动:

对企业的呼吁

  1.  坚持用户中心理念

       在技术研发和产品开发过程中,应始终坚持以用户为中心,关注老年人的实际需求和使用体验,设计简单易用、安全可靠的产品和服务。

2. 加强产学研合作

    企业应加强与高校、研究机构的合作,共同推动 AI 技术在康养领域的创新和应用,加速科技成果转化。

3. 构建开放生态

    通过开放 API 和开发者平台,吸引更多合作伙伴参与 AI 康养生态建设,共同推动产业发展。

对投资者的呼吁

  1.  支持创新型企业

       加大对AI康养领域创新型企业的支持力度,特别是那些能够解决实际问题、提高护理效率、改善老年人生活质量的创新解决方案。

2. 关注长期价值

   投资决策应关注企业的长期价值创造能力,而非短期财务表现,为企业提供稳定的资金支持和战略指导。

3. 布局全产业链

   在AI康养产业链的不同环节进行布局,包括上游的硬件设备、中游的算法平台和下游的应用服务,降低投资风险。

对政策制定者的呼吁

  1.  完善法规标准

       加快制定AI康养领域的法规标准,明确技术要求、安全规范和伦理准则,为产业发展提供良好的制度环境。

2. 加强跨部门协作

   康养涉及医疗、养老、保险、科技等多个领域,政策制定应加强跨部门协作,形成政策合力。

3. 推动国际合作

   加强国际合作,共同应对人口老龄化挑战,分享经验和技术,推动全球 AI 康养产业发展。

对社会各界的呼吁

  1. 关注老年群体需求

      社会各界应更加关注老年群体的需求和权益,推动形成尊老、敬老、爱老的社会氛围。

2. 促进代际融合

   通过各种形式促进代际交流和融合,让老年人能够更好地融入现代社会,同时也让年轻人更好地理解和关爱老年人。

3. 积极参与共建共享

    鼓励老年人及其家庭积极参与 AI 康养产品的设计、测试和评价,共同打造更加适合老年人需求的产品和服务。

    总之,AI智能体在康养领域的应用前景广阔,通过技术创新、模式创新和制度创新,AI技术将为应对全球人口老龄化挑战提供有力支撑,推动康养产业向更加智慧、高效、人性化的方向发展。

 

  这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

一、大模型风口已至:月薪30K+的AI岗正在批量诞生

2025年大模型应用呈现爆发式增长,根据工信部最新数据:

国内大模型相关岗位缺口达47万

初级工程师平均薪资28K

70%企业存在"能用模型不会调优"的痛点

真实案例:某二本机械专业学员,通过4个月系统学习,成功拿到某AI医疗公司大模型优化岗offer,薪资直接翻3倍!

二、如何学习大模型 AI ?


🔥AI取代的不是人类,而是不会用AI的人!麦肯锡最新报告显示:掌握AI工具的从业者生产效率提升47%,薪资溢价达34%!🚀

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1️⃣ 提示词工程:把ChatGPT从玩具变成生产工具
2️⃣ RAG系统:让大模型精准输出行业知识
3️⃣ 智能体开发:用AutoGPT打造24小时数字员工

📦熬了三个大夜整理的《AI进化工具包》送你:
✔️ 大厂内部LLM落地手册(含58个真实案例)
✔️ 提示词设计模板库(覆盖12大应用场景)
✔️ 私藏学习路径图(0基础到项目实战仅需90天)

 

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

*   大模型 AI 能干什么?
*   大模型是怎样获得「智能」的?
*   用好 AI 的核心心法
*   大模型应用业务架构
*   大模型应用技术架构
*   代码示例:向 GPT-3.5 灌入新知识
*   提示工程的意义和核心思想
*   Prompt 典型构成
*   指令调优方法论
*   思维链和思维树
*   Prompt 攻击和防范
*   …

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

*   为什么要做 RAG
*   搭建一个简单的 ChatPDF
*   检索的基础概念
*   什么是向量表示(Embeddings)
*   向量数据库与向量检索
*   基于向量检索的 RAG
*   搭建 RAG 系统的扩展知识
*   混合检索与 RAG-Fusion 简介
*   向量模型本地部署
*   …

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

*   为什么要做 RAG
*   什么是模型
*   什么是模型训练
*   求解器 & 损失函数简介
*   小实验2:手写一个简单的神经网络并训练它
*   什么是训练/预训练/微调/轻量化微调
*   Transformer结构简介
*   轻量化微调
*   实验数据集的构建
*   …

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

*   硬件选型
*   带你了解全球大模型
*   使用国产大模型服务
*   搭建 OpenAI 代理
*   热身:基于阿里云 PAI 部署 Stable Diffusion
*   在本地计算机运行大模型
*   大模型的私有化部署
*   基于 vLLM 部署大模型
*   案例:如何优雅地在阿里云私有部署开源大模型
*   部署一套开源 LLM 项目
*   内容安全
*   互联网信息服务算法备案
*   …

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值