最近吴恩达在 LangChain Interrupt 峰会上关于 AI Agent 做了表述。我研读后很欣慰的是整个行业对于企业落地AI的方法路径已经开始慢慢趋同,这是一个很好的信号。
吴恩达的对于AI Agent的表述是:整个AI进入工程时代,构建核心在于任务拆解、流程建模、评估机制与工具认知,而非模型本身。基于吴恩达的核心观点(任务拆解、流程建模、评估机制、工具认知、执行速度),结合我的理解及企业落地AI Agent的最佳实践,总结以下详细路径、模拟案例及实施框架供大家参考:
企业AI Agent落地路径详解(五步循环)
步骤1:业务痛点识别与流程解构(谁来做:业务负责人 + 流程专家)
- 做什么:
- 识别高重复、规则明确的痛点流程(如合同审查、客服工单处理、报销审核)。
- 绘制当前人工流程图,标注决策点、数据源、参与角色、耗时环节。
- 解构任务粒度:将流程拆分为原子任务(如“提取合同金额”“验证供应商黑名单”“匹配报销政策条款”)。
- 交付物:
流程拆解文档
(含流程图、任务清单、输入/输出定义、失败分支)。可行性评估报告
(标注自动化潜力高的环节)。
- 评估标准:
- 任务拆解是否覆盖全流程关键节点?
- 原子任务是否具备明确输入/输出?(是/否判断或结构化数据)
- 迭代点: 若流程复杂度超出预期,退回重新划定首期自动化范围。
步骤2:最小可行Agent(MVA)构建(谁来做:AI工程师 + 领域专家)
- 做什么:
- 选择工具链:基于任务类型组合工具(如:LangChain管理流程 + RAG接入知识库 + Guardrail做合规过滤)。
- 构建任务管道:用LangGraph编排原子任务顺序,处理分支逻辑(如合同金额>100万需法务复核)。
- 开发初级评估脚本:针对每个原子任务,编写5-10个测试用例的验证脚本(如用规则引擎检查金额提取是否正确)。
- 交付物:
MVA原型系统
(可处理一条端到端流程)。自动化测试集
(覆盖核心任务+关键失败场景)。初始评估面板
(显示各环节通过率、耗时)。
- 评估标准:
- MVA能否在无人工干预下完成单条完整流程?
- 核心原子任务准确率是否>70%?(低于则退回步骤1调整拆解粒度)
- 迭代点: 根据测试结果优化任务拆解逻辑或工具选择(如RAG检索效果差改用结构化查询)。
步骤3:评估体系工业化(自动化)(谁来做:数据工程师 + QA团队)
-
做什么:
- 规则型:编写校验脚本(如日期格式合规性)。
- 模型型:用轻量模型判断输出合理性(如用text-classification模型检测回复是否礼貌)。
-
构建评估流水线:利用LangSmith等平台,自动收集运行日志、输入输出、中间状态。
-
开发自动评估器:
-
设计人工审核队列:将低置信度结果自动推送人工复核。
-
交付物:
自动化评估流水线
(实时监控各环节指标)。问题溯源看板
(快速定位失败环节,如“供应商验证”错误率骤升)。
-
评估标准:
- 是否实现90%+的自动化评估覆盖率?(减少人工检查量)
- 问题定位时间是否从小时级降至分钟级?
-
迭代点: 根据错误模式反哺工具优化(如增加Memory机制避免重复查询)。
步骤4:规模化扩展与体验优化(谁来做:全栈工程师 + UX设计师)
- 做什么:
- 语音场景:加入缓冲话术(“正在查询库存…”)+ 背景音降噪。
- 界面场景:可视化任务进度条 + 实时解释决策依据。
- 接入生产环境:通过MCP协议连接企业API(如ERP、CRM),替代测试数据。
- 优化交互体验:
- 弹性伸缩架构:基于负载动态调度Agent实例(如使用LangServe部署)。
- 交付物:
生产环境集成方案
(含API对接文档、灾备机制)。交互体验升级包
(语音/UI组件库)。
- 评估标准:
- 生产环境任务成功率是否与测试环境差异<5%?
- 用户满意度(NPS)是否提升20%+?
- 迭代点: 根据性能瓶颈重构模块(如高频检索场景用向量数据库替代SQL)。
步骤5:持续反馈与领域增强(谁来做:运维团队 + 业务用户)
- 做什么:
- 建立反馈闭环:用户可标记错误结果,自动触发评估流水线复现问题。
- 持续数据增强:将人工修正结果自动加入训练集,迭代RAG知识库或微调模型。
- 探索高阶能力:引入多Agent协作(如“谈判Agent”调用“合规Agent”校验条款)。
- 交付物:
动态知识库更新机制
(每周自动纳入新政策/案例)。Agent性能周报
(准确率、耗时、成本趋势)。
- 评估标准:
- 错误修复周期是否从周级降至天级?
- 人工干预率是否每月降低10%?
- 迭代点: 当人工干预率<5%时,启动相邻流程自动化(如从合同审查扩展到履约跟踪)。
模拟案例:企业「采购合同风险审查」Agent落地
背景
- 痛点: 法务部日均审查200份合同,人工检查条款耗时易漏,平均处理时长48小时。
落地步骤
阶段 | 执行内容 | 交付物 | 评估与迭代 |
---|---|---|---|
1. 流程解构 | 拆解合同审查流程: 1. 提取关键字段(金额/供应商/日期) 2. 黑名单校验 3. 条款合规匹配(如违约金上限) 4. 生成风险报告 | 合同审查SOP文档+原子任务清单 | 验证:所有任务是否可结构化?→ 是,进入MVA构建 |
2. MVA构建 | - 用LangChain编排流程 - RAG接入企业法规库 - 规则引擎校验金额格式 - 测试10份历史合同 | 原型系统+测试报告(准确率75%) | 问题:条款匹配错误率高 → 优化RAG检索策略,加入条款相似度模型 |
3. 评估工业化 | - LangSmith监控各环节 - 开发自动评估器: • 正则校验日期格式 • 分类模型判断条款风险等级 | 实时评估面板(定位到条款匹配环节错误率40%) | 修复:补充条款训练数据 → 错误率降至15% |
4. 规模化扩展 | - 通过MCP接入ERP获取实时供应商数据 - 增加语音播报:“正在比对第3.2条款…” - 部署K8s集群弹性扩容 | 生产环境接入方案+用户体验手册 | 上线首周成功率92% → 优化供应商查询API超时机制 |
5. 持续增强 | - 用户标记错误自动触发再训练 - 新增“不可抗力条款”知识库 - 引入谈判Agent生成修订建议 | 动态知识库+月度性能报告(人工干预率降至8%) | 启动下一流程:履约风险预警Agent |
最终成效
- 效率提升: 合同处理时间从48小时→15分钟,人力释放70%
- 风险控制: 条款漏检率从5%→0.2%
- 扩展能力: 6个月内覆盖采购、销售、投资三大类合同
关键成功要素
- 拒绝完美主义: 首期MVA仅需解决核心环节。
- 评估即生产力: 自动化测试覆盖率>90%是迭代速度的基石。
- 工具认知红利: 工程师熟练掌握相关工具(例如LangChain+LangSmith+MCP),故障修复速度提升10倍。
- 业务主导迭代: 法务人员提供反馈可直接触发知识库更新,形成“用户即训练师”闭环。
- 体验优先设计: 用研体验产品团队再次伟大。
终极目标: 通过持续迭代,将“AI Agent流程”转化为企业核心基础设施,使高度AI使用成为业务常态——人类仅处理例外决策与策略优化,重复性工作100%由Agent接管。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
如果你真的想学习大模型,请不要去网上找那些零零碎碎的教程,真的很难学懂!你可以根据我这个学习路线和系统资料,制定一套学习计划,只要你肯花时间沉下心去学习,它们一定能帮到你!
大模型全套学习资料领取
这里我整理了一份AI大模型入门到进阶全套学习包,包含学习路线+实战案例+视频+书籍PDF+面试题+DeepSeek部署包和技巧,需要的小伙伴文在下方免费领取哦,真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
部分资料展示
一、 AI大模型学习路线图
整个学习分为7个阶段
二、AI大模型实战案例
涵盖AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,皆可用。
三、视频和书籍PDF合集
从入门到进阶这里都有,跟着老师学习事半功倍。
四、LLM面试题
五、AI产品经理面试题
六、deepseek部署包+技巧大全
😝朋友们如果有需要的话,可以V扫描下方二维码联系领取~