AI时代的新风口!普通人如何转型成为AI产品经理?(建议收藏)

一、普通人跃迁“新机会”

2025上半年最后一天,我拿到了AI产品经理的offer。2025下半年第一周,我的探路者计划实验也圆满成功。这是一个从0基础冲刺AI产品经理,冲刺15k以上offer的实验。实验的结果让人欣喜,这两位同学全部超预期拿到了让他们激动的大厂offer。其中一位同学,甚至在没拿到毕业证书的情况下,收到了17k offer!

这足以说明:AI产品经理的风口,已经吹到了每个人的脚下。

在过去的一个月里,我们沉淀了大量的面试通关秘籍。内容包括:100场面试复盘、1000+岗位JD、200+人事和CEO沟通技巧。可以说,市场上的AI产品经理需求画像,我已经在我的草稿纸上修订了11版,我清晰的认识到,企业对于AI产品经理的渴求,已经不在是观望不决,而是悄然开启了抢人大战。

图片

在这里插入图片描述

二、 AI 产品经理,正处于史上最大转岗红利期

现在可能是AI产品经理史上最疯狂的转岗机会——没有之一。2025年的AI产品经理,早已不是“风口”能概括的了。如果说风口是一阵狂风,那它现在更像个“超级台风眼”:能量集中、席卷一切,却可能转瞬即逝。

先看一组扎眼的数字:岗位需求直接暴涨2.4倍,年薪中位数稳稳站在30-50万,全行业都在拿着offer“抢人”。但要提醒的是:这个“捡漏”窗口可能只剩18个月。为什么这么火?得从供需两端拆开看。

01 需求端正在“核聚变”

IDC报道:2025年全球AI市场规模会冲破5000亿美元,中国要占35%——这意味着什么?AI产品经理的需求同比直接飙涨240%。你能想到的行业,几乎都在喊“要AI PM”:金融圈用AI做智能投顾,医院靠AI影像筛查病灶,工厂里AI质检替代人工,连零售平台都在靠AIGC自动生成商品图。大厂更夸张:阿里、字节、美团2025届校招的AI PM名额,直接比去年翻了3-5倍;连海尔、万科、招商银行这类传统500强,都专门设了“AI转型办公室”,明着暗着批量挖人。

02 供给端却在 “大出血”

年初时,AI产品经理的人才缺口还是150万,现在眼看就要冲破300万。2025年2月人社部的数据:全国AI人才总缺口已破500万,其中AI产品经理和数据产品经理占了26.9%,算下来就是135万的缺口。BOSS直聘和CSDN的报道:AI产品经理岗位量同比涨了420%,供需比却只有1:3.8——也就是说,1个候选人要被3.8家公司抢。翰德《2025人才趋势报告》里甚至提到:哪怕是80-100万年薪的AI产品经理岗位,现在还是“一人难求”。

简单说:市场需要的人太多,能顶上的人太少,薪资自然水涨船高。

三、为什么AI产品经理突然这么火?

AI产品经理的突然爆红,绝非偶然。这一职业的爆发式增长,是技术突破、人才断层与政策推动三重力量共振的结果,每一环都有扎实的数据与行业动向支撑:

01 技术拐点

2025年堪称AI技术的 “实用化元年”。春节期间DeepSeek宣布开源引发的“大模型内卷”,只是冰山一角。斯坦福大学《2025 AI指数报告》指出,全球大模型推理成本较2023年下降92%,算力效率提升380%,直接让AI技术从“高成本试验”变为“全行业可用工具”。

技术能力上,GPT、Gemini、豆包等主流模型在多模态理解、逻辑推理、工具调用等核心指标上达到“人类专家水平”;落地门槛上,Kimi K2 等Agent模型填补了国内 “自动流程编排” 能力空白,使企业无需从零搭建技术栈,只需通过 “产品化设计” 即可快速复用模型能力。

技术已不再是瓶颈,市场真正缺的是 “懂业务、能落地、会设计AI场景” 的产品管理者,这正是AI产品经理的核心价值。

02 政策加码

AI人才的稀缺性已被提升至国家战略层面。

《“十四五”国家人工智能发展规划》中期评估显示,我国将AI人才列为 “数字经济核心战略资源”,明确2025年实现 “AI人才供给能力与产业需求基本匹配” 的目标,政策导向直接刺激企业加速布局;北上深杭等15个新一线城市推出“AI人才专项计划”,给予符合条件的AI产品经理最高50万元安家补贴、直接落户资格;政策对AI产业的扶持推动企业加大投入,而人才储备不足的现状,迫使企业不得不以高于市场均价30%-50%的薪资抢人。

03 红利窗口期

当前的人才缺口红利,本质是 “产业爆发速度” 与 “人才培养周期” 错配的结果,而这个窗口正在快速收窄。

教育部数据显示,2025年全国高校 “人工智能”、“数据科学” 相关专业应届毕业生将达82万人,较2023年增长170%,其中约30%会瞄准产品岗;头部企业已开始设立 “AI产品经理认证体系”(如阿里达摩院联合PMI推出的AI-PM认证),未来 “零经验转岗”将难上加难;德勤《2025 AI人才供需前瞻》指出,按当前培养速度,2026年Q4 AI产品经理供需比将从1:3.8收敛至1:1.2,“高薪抢人”现象将显著缓解。

简言之,AI产品经理的走红,是技术成熟让 “能做事”、政策推动让“必须做”、而人才短缺让“没人做”的必然结果。但这场红利的核心逻辑是“时间差”,18个月后,当供给端跟上节奏,这个职业的“准入红利”或将成为历史。

四、成为AI产品经理难吗?

“AI产品经理入门难吗?”,经常有人问这个问题,也有同学信心满满地说:“我准备下周就去面AI产品经理了!”单从字面理解,“AI产品经理”似乎不难,不就是“AI”+“产品经理”吗?但真正入门后会发现,这中间藏着不少认知误区。

“AI+产品经理” 和 “产品经理+AI”,看似只差一个顺序,实则是两种完全不同的逻辑。“AI+产品经理”:以AI技术为核心驱动力,从0到1构建原生AI产品。比如设计一个基于大模型的智能客服系统,其核心功能、交互逻辑、商业模式都围绕AI能力展开,脱离AI技术,产品本身就失去了存在的意义。“产品经理+AI”:在现有产品框架里“嫁接”AI功能,更像给传统产品装一个“AI插件”。比如给电商APP加一个AIGC商品描述生成工具,AI只是辅助功能,产品的核心逻辑并未改变。

用Cursor(一款AI代码编辑器)的例子就能说透:如果按“产品经理+AI”的思路,它可能只是VS Code的一个AI辅助插件;但最终它做成了独立客户端,核心体验完全基于AI交互设计,这正是“AI+产品经理”的典型实践。所以,AI产品经理的“难”,不在于技术细节的堆砌,而在于能否跳出“插件思维”,真正以AI为内核去定义产品价值。

五、AI 产品经理分类

AI产品经理的范围目前涉及四类细分方向,它们的核心能力、工作场景差异很大,方向选型是我们入场前需要调研清楚的重要课题:

01 大模型AI产品经理

核心目标是把ChatGPT、Kimi这类基础大模型,变成普通人能直接用的功能。举个例子:把GPT-4的能力接入企业微信,让它自动识别群聊里的待办事项、生成会议纪要,甚至根据聊天内容推工作建议。大模型AI产品经理的日常工作内容如下:

  • 设计提示词模板(比如让模型“像客服经理一样回答用户问题”)
  • 测试模型在不同场景的表现(比如识别错别字、逻辑推理的准确率)
  • 控制成本(算清楚每万次调用的服务器费用,避免企业用不起)
  • 防“翻车”(给模型加“护栏”,避免生成违规内容或胡说八道)

02 平台/中台型AI产品经理

负责搭建企业内部的“AI工具箱”,让不懂技术的同事也能轻松用AI。比如:像阿里PAI、百度千帆这样的AI平台,你要设计出“傻瓜式操作界面”——比如让运营同学拖拖拽拽就能训练一个简单的分类模型,不用写一行代码。平台型AI产品经理的日常工作内容如下:

  • 画系统流程图(理清数据从上传到模型输出的全链路)控制成本(算清楚每万次调用的服务器费用,避免企业用不起)
  • 设计低代码平台(比如用下拉菜单替代复杂参数设置)
  • 写API文档(告诉业务方“调用这个接口能实现什么功能”)
  • 对接技术团队(确保平台能兼容公司内部的各种模型和数据)

03 应用型AI产品经理

在具体产品里埋AI功能,直接解决用户的某个痛点,甚至创造新需求。举个例子:美图秀秀的“AI绘画”(输入文字就能生成插画)、淘宝“拍立淘”(拍照搜同款)、抖音的“AI特效”,都是这类产品的典型。应用型AI产品经理的日常工作内容如下:

  • 和普通产品经理类似,但核心是“用AI重构体验”(比如想清楚“AI绘画功能放在首页还是二级菜单”)
  • 跑用户访谈(搞明白“用户到底想要写实画风还是卡通画风”)
  • 做A/B测试(对比“AI生成标题”和“人工写标题”哪个点击率更高)
  • 盯业务指标(比如AI功能上线后,用户留存率、付费率有没有提升)

04 AI数据产品经理

AI模型的效果好不好,80%靠数据——这类产品经理就是负责“把原材料变成能下锅的菜”。举个例子:给自动驾驶模型准备训练数据时,要从100万张照片里筛掉模糊、逆光、无意义的,只留下“清晰的路标、行人、红绿灯”,还要标注出“这是左转箭头”“那是限速60公里”。应用型AI产品经理的日常工作内容如下:

  • 定数据标注规则(比如明确“什么样的照片算‘模糊’、‘有效场景’”)
  • 管理数据团队(包括外包标注人员,确保标注质量)
  • 设计数据闭环(比如让模型“学错”的案例自动回到数据库,重新标注训练)
  • 盯数据指标(比如“标注准确率”“数据覆盖率”,这些直接影响模型效果)

六、成为AI产品经理,需要具备哪些能力?

AI 产品经理的能力素质,直接决定了企业是否向你伸出橄榄枝,更左右着你最终的薪资档位。通常来讲,AI产品经理核心的能力应该覆盖以下六个方向:

01 场景翻译力

简单说,就是把普通人嘴里的 “模糊需求”,变成 AI 能听懂的 “明确指令”。这就像你是个 “需求翻译官”,一边听着用户的 “心里话”,一边给 AI “下任务”。

比如你闺蜜抱怨:“每次拍照都把我拍成五五分,显腿短!” 普通人可能只会安慰 “下次离远点儿拍”,但有场景翻译力的人会立刻拆解开:用户要的不是 “离远拍”,而是 “照片里的腿看起来更长”。那怎么让 AI 做到?可以转化成具体指令 ——“相机识别到人像后,自动将腿部比例拉长 10%,同时保持上半身不变形”。

再举个例子:如果妈妈说 “这台扫地机器人总把拖鞋撞得东倒西歪”,翻译力就会让你想到 ——“需要给机器人加一个‘拖鞋识别功能’,遇到拖鞋时自动减速绕行 30 厘米”。

AI 本质是 “执行者”,它听不懂 “大概”“可能”“我感觉”,必须靠你把模糊的感受拆解成它能执行的数字、规则、动作。这一步是 AI 产品能真正解决问题的起点。

02 技术认知力

不用自己写代码,但你得能听懂技术人员说的 “黑话”,知道哪些是关键问题,哪些是 “吓唬人的术语”。就像医生说 “窦性心律不齐”,你不用懂心电图原理,但要知道 “这不是心脏病,注意休息就行”。

比如技术说 “我们的模型有‘幻觉现象’”,你得立刻反应过来:“哦,就是 AI 有时候会瞎编答案,比如问它‘北京的首都在哪’,它可能乱答‘上海’”。这还不够,你还得追问:“那怎么减少这种情况?是给它多喂点正确的数据,还是加个‘事实核查’的步骤?”生活里也有类似场景:比如家里空调不制冷了,师傅说 “压缩机缺氟”,你不用懂压缩机原理,但要知道 “不是空调废了,加氟就能修好”,而不是急着花钱买新的。

如果你听不懂技术黑话,就可能被 “技术难度” 吓退,或者误判产品可行性。比如技术说 “这个功能需要训练一个专属模型,成本太高”,你得能判断:“是真的成本高到做不了,还是有更便宜的替代方案(比如用现成模型改一改)?”

03 数据工程力

AI 的 “智商” 全靠数据喂出来,但原始数据往往是 “乱糟糟的”—— 就像你买了一堆菜,里面混着烂叶子、泥土,甚至还有别的菜。数据工程力就是把这些 “脏数据” 变成 “干净食材” 的能力。

比如你要做一个 “猫咪识别 APP”,先收集了 1000 张照片,但里面混了 200 张狗的照片,还有 50 张拍糊了的、10 张只有猫爪子的…… 这时候你就得像 “整理相册” 一样:先删掉所有狗的照片,再把糊掉的、不完整的剔除,最后剩下 800 张 “清晰的、完整的猫咪照片”。这些干净的数据喂给 AI,它才能学得准。

生活里的例子更常见:你手机相册里存了几千张图,有工作截图、表情包、风景照,还有你和朋友的自拍。当你想做一个 “个人年度相册” 时,你会删掉截图和表情包,只留下有纪念意义的照片 —— 这其实就是 “数据清洗” 的过程。

数据就像 AI 的 “课本”,如果课本里有错别字、混乱的内容,AI 学完肯定会 “考砸”。比如你给 AI 喂了一堆 “猫和狗混在一起” 的照片,它最后可能把 “哈士奇” 认成 “长毛猫”。

04 产品方法力

做 AI 产品不用一开始就追求 “完美”,而是先做出一个 “能跑起来的简化版”,拿到用户反馈后再慢慢优化。这就像搭积木:先搭个小房子看看样子,不合适就拆了换零件,而不是一上来就想盖城堡。

比如你想做一个 “猫狗识别小程序”,不用先开发复杂的界面和功能。可以先用现成的 AI 模型模板(比如调用免费的识别接口),再用简单的工具拼一个页面,用户上传照片后能显示 “这是猫” 或 “这是狗” 就行。先让朋友扫码试试,问问他们 “能不能用明白?识别准不准?” 收集到反馈后,再加功能(比如识别具体品种、保存历史记录)。

这就像你想给朋友做生日海报,不会先学 PS 设计复杂图案,而是打开美图秀秀,选个现成模板,加张照片和文字,先发给朋友看看 “喜不喜欢这个风格”,再决定要不要细化 —— 这就是 “最小可行产品(MVP)” 的思路。

AI 技术变化太快,等你把产品做到 “完美”,可能市场早就变了。快速做出简化版,用最少的时间和钱验证 “用户到底要不要”,才能避免做 “没人用的产品”。

05 量化体验力

用户说 “这个功能好用” 太空泛,你得能用具体数字证明 “到底有多好用”。就像你给老板汇报工作,说 “今天业绩很好” 不如说 “今天销售额比昨天涨了 30%,多卖了 50 件货”。

比如你给拍照 APP 加了 “自动拉腿” 功能,不能只说 “用户很喜欢”,而是要算出 “加了这个功能后,用户平均拍照次数从每天 2 次涨到 2.6 次(多了 30%),分享到朋友圈的比例提高了 25%”。这些数字能直接说服老板 “这个功能值得投入更多资源优化”。

生活中也离不开这种能力:你给奶茶店建议 “第二杯半价”,老板可能犹豫,但你说 “试了 3 天,每天多卖 50 杯,总销售额涨了 40%”,老板肯定立刻同意长期推行。

AI 产品往往需要持续投入资源(比如买算力、请技术),没有数字支撑,别人很难相信 “这个产品真的有价值”。数字就像 “产品效果的体检报告”,能清晰看出 “哪里好,哪里需要改”。

06 合规 & 伦理力

AI 再聪明,也可能出错或带来风险 —— 比如认错人、泄露隐私,甚至做出不符合伦理的判断。合规 & 伦理力就是提前想到这些风险,给 AI “定规矩”,避免捅娄子。

比如你做了个 “猫狗识别 APP”,得提前想到:“如果 AI 把名贵的‘布偶猫’认成‘普通家猫’,用户会不会生气?” 于是你设计了 “纠错反馈按钮”,用户可以手动标注 “这是布偶猫”,同时 AI 会记录错误,下次改进。

这就像外卖平台早就想好 “如果送餐超时怎么办”,于是设置了 “超时 10 分钟自动赔 5 元券”—— 不是说不会超时,而是提前准备好解决方案,让用户少生气。

再比如 AI 换脸软件,你得规定 “不能换明星脸做低俗视频”“必须让用户明确知道这是 AI 生成的”,否则可能涉及侵权或诈骗。

AI 产品一旦出问题,可能比普通产品更严重(比如泄露个人信息、做出歧视性判断)。提前想好 “风险点和应对方案”,才能让产品走得更稳,避免刚上线就被下架。

这六个能力,其实就像 AI 产品经理的 “六件套工具”:既能听懂用户的话,又能跟技术沟通,还能把数据理干净、快速试错、用数字证明价值,最后守住安全底线。哪怕是零基础,把这些 “工具” 练熟了,也能慢慢入门 AI 产品经理。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值