主流大模型推理框架全面对比:vLLM、SGLang、TensorRT-LLM、Ollama、XInference 选型指南

随着大语言模型技术的快速发展,推理部署框架作为连接模型与实际应用的关键环节,其重要性日益凸显。本文将对当前主流的vLLM、SGLang、TensorRT-LLM、Ollama和XInference等推理框架进行系统性梳理,从核心技术、架构设计、性能指标和适用场景等多个维度进行深入分析,为大模型部署选型提供参考依据。

一、vLLM:基于PyTorch的高性能推理引擎

vLLM[1](Vectorized Large Language Model Serving System)是由伯克利大学团队开发的开源推理框架,专注于解决大模型服务中的显存效率与吞吐量瓶颈。

其核心技术创新在于引入了PagedAttention(分页注意力)和Continuous Batching(连续批处理)两大关键技术,通过借鉴操作系统内存分页管理思想,显著提升了显存利用率和推理吞吐量。

项目地址:https://github.com/vllm-project/vllm.git

img

1、核心技术特点

vLLM的核心架构基于PyTorch,但通过深度优化实现了高性能。其核心技术亮点包括:

  • PagedAttention[2] :借鉴了操作系统的分页机制,将注意力键值对(KV Cache)存储在非连续显存空间。传统的大模型推理需要为每个请求的序列分配连续的显存块,而vLLM将KV Cache划分为固定大小的"页",动态分配和复用显存空间,解决了显存碎片化、预留浪费和并发限制三大瓶颈。这种设计使得显存利用率从传统框架的60%提升至95%以上,支持处理更多并发请求。

PagedAttention:KV 缓存被划分为块;块在内存空间中不需要连续。PagedAttention:KV 缓存被划分为块;块在内存空间中不需要连续。

使用 PagedAttention 的请求示例生成过程使用 PagedAttention 的请求示例生成过程

  • Continuous Batching[3]:摒弃了传统的等待凑批处理模式,能够实时将新请求动态加入处理队列**,确保GPU持续处于工作状态。这种技术使vLLM在高并发场景下保持较低的TTFT(首字出词时间),在Llama3.1-170B-FP8单H100测试中,TTFT仅为123ms,比TensorRT-LLM(194ms)和SGLang(340ms)表现更优。
  • 多卡并行优化:支持张量并行(Tensor Parallelism)和流水线并行(Pipeline Parallelism),通过NCCL/MPI等通信库实现模型权重的智能切分与同步,既优化了内存使用,又提升了整体计算性能。
  • 量化优化支持 :内置 GPTQ[4]、AWQ[5] 等量化技术,有效压缩模型体积,进一步提升 GPU 资源利用率。
2、适用场景与优势局限分析

适用场景:vLLM特别适合企业级高并发应用,如在线客服、金融交易和智能文档处理等对延迟与吞吐量要求极高的场景。其在单卡和多卡部署中均能保持较低的TTFT,适合需要快速响应的实时应用。

优势局限
(1)高并发处理能力,支持横向扩展至多机多卡集群(2)显存利用率高达95%以上,显著降低硬件成本(3)支持多种Transformer架构模型,兼容性良好(4)提供生产级API服务,易于集成到现有系统(1)依赖高端GPU(如A100、H100),硬件投入成本较高(2)代码复杂度高,二次开发门槛较大(3)在极低延迟场景下可能不如TensorRT-LLM表现优异(4)分布式调度在超大规模集群中仍需优化
在这里插入图片描述

二、SGLang:基于Radix树的高吞吐推理引擎

SGLang[6] 是由伯克利团队开发的另一款大模型推理引擎,专注于提升LLM的吞吐量和响应延迟,同时简化编程接口。

其核心技术是RadixAttention,通过高效缓存和结构化输出优化,为高并发场景提供解决方案。

项目地址:https://github.com/sgl-project/sglang

img

1、核心技术特点

SGLang的核心创新在于引入了RadixAttention技术和结构化输出机制:

  • RadixAttention[7] :利用Radix树管理KV缓存的前缀复用,通过LRU策略和引用计数器优化缓存命中率。与传统系统在生成请求完成后丢弃KV缓存不同,SGLang系统将提示和生成结果的缓存保留在基数树中,实现高效的前缀搜索、重用、插入和驱逐。这种技术使得SGLang在多轮对话和规划任务中表现突出,测试显示在Llama-7B上跑多轮对话,吞吐量比vLLM高5倍。

RadixAttention 操作示例,采用 LRU 驱逐策略,展示了九个步骤RadixAttention 操作示例,采用 LRU 驱逐策略,展示了九个步骤

  • 结构化输出:通过正则表达式实现约束解码,可以直接输出符合要求的格式(如JSON、XML),这对API调用和数据处理特别有帮助。这种机制使得SGLang在处理结构化查询时更加高效,减少了后处理的工作量。
  • 轻量模块化架构:采用完全Python实现的调度器,虽然代码量较小,但扩展性良好。其架构支持跨GPU缓存共享,进一步减少多卡计算的浪费

img

适用场景与优势局限

适用场景:SGLang特别适合需要高吞吐量的场景,如搜索引擎API、金融交易系统和实时数据处理平台等。其在处理结构化输出和多轮对话任务时具有明显优势。

优势局限
(1)超高吞吐量,在多轮对话场景下性能提升5倍 (2)极低响应延迟,适合高并发实时响应场景(3)结构化输出能力,减少后处理工作量(4)Python实现,代码简洁易懂(5)支持跨GPU缓存共享,减少多卡计算浪费(1)对多模态任务支持能力有限,生态尚在起步阶段 (2)对某些模型(如Mistralv0.3)的优化不足,性能可能不理想(3)扩展性受限于Python调度器,超大规模集群部署可能面临挑战

三、TensorRT-LLM:NVIDIA的深度优化推理引擎

TensorRT-LLM[8] 是NVIDIA推出的基于TensorRT的深度优化推理引擎,专为大语言模型设计,旨在充分发挥NVIDIA GPU的计算潜力。

项目地址:https://github.com/NVIDIA/TensorRT-LLM

img

1、核心技术特点

TensorRT-LLM的核心技术包括:

  • 预编译优化:通过TensorRT的全链路优化技术,对模型进行预编译,生成高度优化的TensorRT引擎文件。这种预编译过程虽然带来冷启动延迟,但能显著提升推理速度和吞吐量。
  • 量化支持:支持FP8、FP4和INT4等多种量化方案,通过降低计算精度减少显存占用和提升推理速度。在FP8精度下,TensorRT-LLM能实现接近原生精度的性能,同时显存占用减少40%以上。
  • 内核级优化:针对Transformer架构的各个计算模块(如注意力机制、前馈网络等)进行深度优化,实现高效的CUDA内核。这种优化使得TensorRT-LLM在NVIDIA GPU上表现出色。
  • 张量***并行***与流水线并行:支持多GPU协同工作,通过张量并行和流水线并行扩展模型规模,提高推理吞吐量
2、适用场景与优势局限

**适用场景:**TensorRT-LLM特别适合对延迟要求极高的企业级应用,如实时客服系统、金融高频交易和需要快速响应的API服务。

优势局限
(1)极低延迟,TTFT表现优异 (2)高吞吐量,适合大规模在线服务(3)充分发挥NVIDIA GPU优势,性能接近硬件极限(4)生态成熟,与NVIDIA整个AI生态无缝集成(1)仅限NVIDIA CUDA平台,跨平台部署存在局限 (2)预编译过程可能带来较长的冷启动延迟(3)对非NVIDIA GPU(如AMD或国产芯片)支持有限(4)定制化优化能力不如开源框架灵活

四、Ollama:轻量级的本地推理平台

Ollama[9] 是由AI社区开发的轻量级本地推理平台,专注于简化大模型本地部署和运行,特别适合个人开发者和研究者。

项目地址:https://github.com/ollama/ollama

1、核心技术特点

Ollama的核心技术特点包括:

  • 基于Go语言的封装:Ollama基于Go语言实现,通过模块化封装将模型权重、依赖库和运行环境整合为统一容器。这种设计使得用户无需关注底层依赖,仅需一条命令行即可启动模型服务。
  • llama.cpp集成:Ollama封装了llama.cpp,一个高性能的CPU/GPU大语言模型推理框架,支持1.5位、2位、3位、4位、5位、6位和8位整数量化。
  • 跨平台支持:全面支持macOS、Windows和Linux系统,特别适合ARM架构设备,如苹果M系列芯片。
  • 本地化部署:支持完全离线运行,确保数据安全与隐私,适合对本地数据保护有高要求的应用。
  • 低硬件门槛:无需高端GPU,支持消费级设备和边缘设备运行,降低了大模型部署的硬件要求
2、适用场景与优势局限

适用场景:Ollama特别适合个人开发者、教育展示和本地隐私要求高的场景,如个人知识库、教育演示和原型验证等。

优势局限
(1)安装便捷,一键部署,无需复杂配置 (2)低硬件要求,支持消费级设备和边缘设备 (3)数据离线保障,适合隐私敏感场景 (4)易于上手,适合非专业开发者使用 (5)启动速度快,冷启动时间仅12秒左右(1)并发处理能力较弱,不适合大规模在线服务 (2)扩展性和插件定制能力有限,难以满足复杂业务需求 (3)仅支持文本生成类LLM(如Llama系列、Mistral),多模态支持不足 (4)性能优化不足,在高负载场景下可能无法满足需求

五、XInference:分离式部署的分布式推理框架

XInference[10] 是一个高性能的分布式推理框架,专注于简化AI模型的运行和集成,特别适合企业级大规模部署。

项目地址:https://github.com/xorbitsai/inference

img

1、核心技术特点

XInference的核心架构:

  • API层:基于FastAPI构建,提供RESTful接口和OpenAI兼容接口,便于与现有应用集成。
  • Core Service层:引入自主研发的Xoscar框架,简化分布式调度和通信任务,支持多卡并行和Kubernetes集群扩展。
  • Actor层:由ModelActor组成,负责加载和执行模型任务。每个ModelActor分布在ActorPool中,可以独立运行和管理。
  • 分离式部署:将模型的Prefill(初始计算)和Decode(生成阶段)分配到不同GPU,利用DeepEP通信库加速KVCache传输,提升资源利用率。
  • 算子优化:在Actor层引入FlashMLA/DeepGEMM算子,适配国产海光DCU和NVIDIA Hopper GPU,提升计算效率。
  • 连续批处理:结合vLLM的连续批处理技术,优化请求调度,提高GPU利用率
2、适用场景与优势局限

适用场景:XInference特别适合企业级大规模部署,如智能客服系统、知识库问答和需要分布式扩展的场景。

优势局限
(1)分布式推理能力,支持Kubernetes集群扩展 (2)分离式部署优化资源利用率,提升吞吐量(3)支持多模态任务(如文本转语音、图像标注) (4)冷启动时间短,适合快速部署 (5)与Dify等应用平台无缝集成,构建端到端解决方案(1)分布式调度复杂度高,运维门槛较大(2)依赖DeepEP通信库,跨平台兼容性受限(3)多模态支持仍在完善中,部分功能可能不成熟(4)社区生态相对年轻,文档和案例支持不足

六、LightLLM:轻量级高性能推理框架

LightLLM[11] 是一个基于Python的LLM推理和服务框架,以轻量级设计、易于扩展和高速性能而闻名。

项目地址:https://github.com/ModelTC/LightLLM

img

1、核心技术特点

LightLLM的核心技术包括:

  • 三进程异步协作:将tokenization、模型推理和detokenization三个过程分别交给不同进程处理,实现异步执行,减少I/O阻塞。
  • 动态批处理:根据请求特性和系统负载情况,智能调整批处理策略,平衡吞吐量和延迟。
  • TokenAttention机制:以token为单位的KV缓存内存管理,实现内存零浪费,支持int8 KV Cache,可将最大token处理量提升约两倍。
  • 零填充(nopad-Attention) :能够高效处理长度差异较大的输入序列,避免传统填充方式带来的计算资源浪费。
  • FlashAttention集成:显著提升注意力计算速度,同时降低GPU内存占用。
  • 张量***并行***技术:支持多GPU进行张量并行计算,加速大规模模型的推理过程
2、适用场景与优势局限

适用场景:LightLLM特别适合需要高吞吐量的场景,如大规模语言模型API服务、多模态模型在线推理和高并发聊天机器人后端等

优势局限
(1)高吞吐量,Llama2-13B吞吐量达480 tokens/s (2)显存占用低,资源利用率高 (3)支持边缘设备部署,如智能手机和IoT设备 (4)模块化设计,易于扩展和定制 (5)支持多种模型架构,兼容性良好(1)边缘设备上的具体性能数据尚未公开(2)多模态支持仍在完善中,部分功能可能不成熟(3)分布式部署能力不如XInference和vLLM成熟(4)社区生态相对年轻,文档和案例支持不足

七、国产硬件适配框架:昇腾与LMDeploy

随着国产AI芯片的发展,针对昇腾等国产硬件的推理框架也日益成熟。昇腾AI处理器和LMDeploy是国产硬件适配的代表。

1、昇腾AI处理器框架

昇腾AI处理器是华为基于自研达芬奇架构开发的AI加速芯片,其推理框架主要包括:

  • MindSpore Inference[12] :华为开发的推理框架,基于昇腾达芬奇架构,支持On-Device执行(整图下沉至芯片)、算子融合(如矩阵乘法与激活函数合并)和静态图优化,提升推理性能 。
  • CBQ量化技术:华为诺亚方舟实验室联合中科大开发的跨块重建后训练量化方案,仅用0.1%的训练数据,一键压缩大模型至1/7体积,浮点模型性能保留99%,真正实现"轻量不降智" 。
  • 昇腾CANN软件栈:提供多层次编程接口,通过开发AscendCL和TBE编程接口,使不同AI应用可在CANN平台上高效快速地运行 。

img

2、LMDeploy:视觉语言混合任务专家

LMDeploy[13]是由上海人工智能实验室模型压缩和部署团队开发的部署工具箱,专注于大语言模型和视觉语言模型的部署。

img

核心技术:

  • 国产GPU深度适配,针对昇腾等国产硬件进行优化
  • 显存优化,通过动态量化和模型切分降低显存占用
  • 多模态融合支持,同时处理视觉和语言数据
  • TurboMind引擎,提供高效的4bit推理CUDA kernel
3、适用场景:

国内企业、政府机构部署,视觉语言混合任务。

八、框架选型对比与适用场景分析

技术优势适用场景
vLLM适合动态批处理与多GPU扩展,TTFT表现优异,适合需要快速响应的场景企业级高并发应用
TensorRT-LLM在低延迟场景下表现最佳,适合对响应速度要求苛刻的生产级应用企业级高并发应用
SGLang在高并发稳定吞吐方面表现突出,适合需要持续高吞吐的场景企业级高并发应用
XInference提供分离式部署和分布式能力,适合需要快速验证分布式场景的开发者企业级高并发应用
Ollama安装便捷,支持跨平台,冷启动速度快,适合轻量级实验个人开发与本地原型
Llama.cpp零硬件门槛,适合无GPU环境下的基础推理,如物联网设备个人开发与本地原型
LightLLM轻量级设计,支持边缘设备部署,吞吐量表现优异边缘设备部署
LMDeploy针对昇腾等国产硬件深度优化,多模态支持能力强,适合视觉语言混合任务国产硬件部署
昇腾框架支持Qwen2.5-Omni等全模态模型,扩展至3D、视频、传感信号等全模态场景国产硬件部署

写在最后

大模型推理部署框架的选择应基于业务需求、硬件资源和未来扩展规划vLLM和TensorRT-LLM在企业级高并发场景下表现最佳,SGLang在高吞吐量和多轮对话场景下具有明显优势,Ollama适合个人开发和快速原型验证,XInference和LightLLM则在分布式部署和边缘计算方面展现出潜力,LMDeploy和昇腾框架则在国产硬件适配上具有独特优势。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

<think>好的,用户的问题是关于Dify是否支持接入本地部署的vLLMTensorRT-LLM,以及是否有现成的接口或集成。我需要先理解这些技术的作用和Dify平台的架构。 首先,vLLM是一个针对大语言模型推理优化的库,能够提高推理速度和吞吐量。TensorRT-LLM是NVIDIA推出的优化框架,专为GPU加速设计。两者都是本地部署时的常用工具。 接下来,Dify作为一个AI应用开发平台,支持多种大语言模型的集成。根据文档,Dify允许通过自定义模型代理或API接入本地模型。查看用户提供的引用[1],提到Dify可以增强现有应用的能力,通过引入大语言模型,这可能包括本地部署的模型。 然后,我需要确认Dify是否直接支持vLLMTensorRT-LLM。通常,这类平台可能不会直接内置所有框架,但提供灵活的接口。比如,用户可以通过自定义模型配置,将本地启动的vLLM服务作为模型代理接入Dify。同样,TensorRT-LLM部署的服务也可以通过API集成到Dify中。 另外,用户提到的现有API或集成支持。Dify的文档可能有关于如何添加自定义模型的部分,需要指导用户参考相关文档,配置模型名称、API端点、认证信息等步骤。可能还需要示例代码或配置文件的指引,比如通过YAML文件定义模型参数。 最后,根据引用[2]提到的智能分析解决方案,Dify在处理大语言模型的应用场景时,可能已经具备了一定的灵活性和扩展性,支持用户根据需求集成不同的推理后端。因此,结论应该是Dify支持通过自定义方式接入本地部署的vLLMTensorRT-LLM,虽然没有现成的插件,但可以通过API或代理实现。</think>Dify 支持通过自定义模型代理或 API 接入本地部署的 vLLMTensorRT-LLM 推理引擎,具体实现方式如下: 1. **vLLM 集成** - 在本地部署 vLLM 服务后,可通过 Dify 的「自定义模型」功能配置 API 端点 - 需设置模型名称、推理参数、API 认证信息等 - 示例配置(YAML): ```yaml model_endpoint: name: "vllm-7b" base_url: "http://localhost:8000/v1" api_key: "your-api-key" ``` 2. **TensorRT-LLM 集成** - 部署 TensorRT-LLM 推理服务后,通过 Dify 的「模型供应商」接口对接 - 支持 Triton Inference Server 等标准化服务协议 - 需要配置模型标识符、最大 token 数等参数[^1] 3. **现有接口支持** - 提供 RESTful API 和 Python SDK 两种接入方式 - 支持动态加载模型配置,无需重启服务 - 可复用现有认证体系和监控组件[^2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值