Transformer可以说是大模型的基石,面试大模型相关工作,必问Transformer!所以,大家一定要在理解Transformer上多下功夫。今天的话题是:Transformer里为什么Q和K要使用不同的权重矩阵生成?为何不能使用同一个值进行自身的点乘?
咱们可以把Q(查询)、K(键)、V(值)想象成在“图书馆查书”:
Q:就是你想问的问题(比如:“怎么减肥?”)。
K:就是书脊上贴的那些关键词标签(比如:“减肥”、“瘦身”、“运动”、“饮食”)。
V:就是书里面具体写的内容(比如:“减肥需要少吃多动,配合运动效果更好”)。
为什么Q和K要用不同的“转换器”(权重矩阵)?
问题(Q)和关键词(K)在图书馆里干的事儿完全不一样。问题是你主动发出的“询问”,关键词是书被动提供的“线索”。它们得用不同的方式“打扮”一下,才能顺利配对。
比如,你的问题是“怎么减肥?”。图书馆里书的关键词有“减肥”、“瘦身”、“运动”,也有“历史”、“地理”。
我们需要一个专门的“问题转换器”(Wᵠ),把你的问题“怎么减肥?”变成一种能“识别”关键词的“探测器”。
同时,还需要一个专门的“关键词转换器”(Wᵏ),把书上的关键词“减肥”、“瘦身”变成一种能“被识别”的“信号”。
只有当“问题探测器”(Q)和“关键词信号”(K)是专门为对方设计的,它们才能精准匹配上(“怎么减肥?”这个Q,能匹配上“减肥”这个K)。
要是它们用同一个转换器,那就等于把“问题”和“关键词”当成了一回事。结果呢?“怎么减肥?”这个Q,可能就只能匹配“怎么减肥?”这个K,根本找不到“瘦身”、“运动”这些相关的书了。不同的角色,需要不同的“适配器”才能高效工作。
为什么不能直接用同一个值(比如输入X)同时做Q和K?
如果我们为了图省事,不给Q和K用不同的转换器(Wᵠ和Wᵏ),而是直接用输入的原始信息X同时当Q和K(Q = K = X),会发生什么呢?
这就好比你在图书馆查书时,只能用你问的那个一模一样的句子去匹配书上的关键词。
比如,你问“怎么减肥?”,系统就只能去匹配书架上有没有一本关键词正好是“怎么减肥?”的书。书上的关键词是“减肥”、“瘦身”、“运动”?对不起,系统觉得它们和“怎么减肥?”不是完全一样的词,就不会匹配给你。
结果就是,查书的范围变得超级窄!你明明想找所有关于减肥的书,结果只能找到一本标题恰好是“怎么减肥?”的书(可能还没有),其他所有相关的书都被忽略了。模型就失去了理解“同义词”、“相关词”的能力,只能死板地匹配完全相同的词。
Transformer里Q、K、V是怎么来的?
我们可以把输入的每个词(比如“我”、“爱”、“北京”)想象成一个“原始信息包”(词向量X)。这个信息包X会同时经过三个不同的“加工厂”(权重矩阵Wᵠ、Wᵏ、Wᵛ):
1)经过Wᵠ加工厂: 出来的就是Q(查询)。这个Q代表这个词想知道什么信息(比如“爱”这个词的Q,可能想知道“谁在爱?”和“爱的是什么?”)。
2)经过Wᵏ加工厂: 出来的就是K(键)。这个K代表这个词能提供什么信息(比如“我”这个词的K,可能表示“我是一个主语”;“北京”这个词的K,可能表示“我是一个地点宾语”)。
3)经过Wᵛ加工厂: 出来的就是V(值)。这个V就是这个词本身携带的具体内容(比如“我”的V就是“我”的语义,“爱”的V就是“爱”的语义,“北京”的V就是“北京”的语义)。
这三个加工厂(Wᵠ、Wᵏ、Wᵛ)都是模型自己“学习”出来的,它们知道怎么把原始信息X“翻译”成最适合做查询、键和值的样子。它们通常会把信息“浓缩”一下(比如从768维变成64维),这样计算起来更快,也更容易抓住重点。
核心原因再强调:Q和K的“身份”不同!
Q(查询)就像一个提问者:它代表当前词(比如“爱”)需要去“关注”句子里的哪些其他词(比如“我”和“北京”),才能理解自己的意思。
K(键) 就像一个被提问者:它代表句子里的每个词(比如“我”、“北京”)能提供什么“线索”或“信息类型”(比如“我是主语”、“我是宾语”)。
假如Q和K用了同一个加工厂(Wᵠ = Wᵏ),那么Q和K就会变得一模一样(Q = K)。这就好比提问者(Q)和被提问者(K)说的是同一种“语言”,但问题是,这种“语言”只能表达“我自己”!
那么,“爱”这个提问者(Q)就只能去匹配和“爱”完全一样的被提问者(K)。结果呢? “爱”就只能关注到“爱”自己,根本无法去关注“我”或者“北京”,因为“爱”的Q和“我”的K(或者“北京”的K)不是同一种“语言”,无法沟通!模型就学不到词和词之间的关系(比如“爱”和“我”是主谓关系,“爱”和“北京”是动宾关系)。
总结一下
1)Q和K必须用不同的“转换器”(权重矩阵): 因为它们在注意力机制里干的是不同的活儿(Q是“提问者”,K是“被提问者”)。如果用同一个转换器,它们就“鸡同鸭讲”,没法有效沟通,模型就学不到词和词之间谁跟谁有关系。
2)不能用同一个值(比如原始输入X)同时做Q和K:否则模型就变成了“自恋狂”,每个词只关注和自己一模一样的东西,完全看不见上下文里其他重要的词(比如“爱”看不见“我”和“北京”),而且模型也学不会怎么提炼关键信息来做“提问”和“回答”,效果会非常差。
3)本质是什么?我们可以把Wᵠ和Wᵏ想象成模型自己学会的“提问技巧”和“回答技巧”。通过给Q和K配备不同的、可学习的“技巧”(权重矩阵),模型就获得了**“定义什么是好的提问”、“定义什么是好的回答”以及“让提问和回答能精准匹配”** 的能力。这就是Transformer模型这么强大、能理解复杂语言关系的一个核心秘诀!就像给图书馆配了个超级聪明的图书管理员,知道怎么把你模糊的问题(Q)精准匹配到书架上那些相关的关键词标签(K),然后找到你真正需要的内容(V)。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发