Normalization 用于标准化特征稳定训练过程,缓解梯度消失或爆炸问题,并加速模型训练与提高模型泛化性能。
这篇文章旨在浅析大模型领域常见的 Normalization,包括:
不同结构:
- Pre-Norm
- Post-Norm
不同行为:
- LayerNorm
- RMSNorm
- DeepNorm
- BranchNorm
01 不同结构
Pre-Norm:
Post-Norm:
目前公认 Post-Norm 比 Pre-Norm 的最终性能要强,但不如 Pre-Norm 容易训练。
参考:为什么 Pre Norm 的效果不如 Post Norm?
https://zhuanlan.zhihu.com/p/494661681
抛弃一些复杂分析,其实从公式上可以看出 Pre-Norm 的特征可以一直前向传递,反而容易出现退化。
然而,大模型基本选择 Pre-Norm,大概有以下两个原因:
- 目前大模型层数不算深,Post-Norm 在深度上较 Pre-Norm 的优势很难凸显。
- 大模型的训练不够充分,在相同条件下 Pre-Norm 更容易训练,性能更好。
参考:https://arxiv.org/abs/2002.04745
02 不同类型
(1)LayerNorm
大模型输入存在 padding,使用 BatchNorm 会导致 padding 的特征影响正常文本 token 的语义,LayerNorm 被提出由于缓解这种现象,在一个 data sample 内部标准化。
值得一提的是,Pytorch 中 LayerNorm 的特征统计总体其实是以 Instance Norm 的方式,同时将 scale 和 bias 设置为矢量(Instance Norm 中是标量) 。
代码:
import torch
(2)RMSNorm
RMSNorm 论文指出,LayerNorm 的关键在于标准化的缩放不变性而非平移不变性,因此可以通过删除公式中关于均值的操作提高效率,且保留性能:
在 LLaMA 中的实现:
classLlamaRMSNorm(nn.Module):
(3)DeepNorm
DeepNorm 在大模型中用的不多,简单概括就是:对残差连接加入类似门控的缩放因子 α,使得超深 Transformer 在训练中更加稳定和高效。
(4)BranchNorm
是对 DeepNorm 的改进,动态调整残差缩放因子,提升训练后期的模型表达能力,从而兼顾 DeepNorm 的稳定性和 LayerNorm 的表达能力。
DeepNorm 和 BranchNorm 可做了解,比较少见。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发