Qwen 与 DeepSeek 为何都选择 Pre-Norm?大模型架构设计的深层原因解析(建议收藏)

Normalization 用于标准化特征稳定训练过程,缓解梯度消失或爆炸问题,并加速模型训练与提高模型泛化性能。

这篇文章旨在浅析大模型领域常见的 Normalization,包括:

不同结构:

  • Pre-Norm
  • Post-Norm

不同行为:

  • LayerNorm
  • RMSNorm
  • DeepNorm
  • BranchNorm

01 不同结构

在这里插入图片描述

Pre-Norm:

Post-Norm:

目前公认 Post-Norm 比 Pre-Norm 的最终性能要强,但不如 Pre-Norm 容易训练。

参考:为什么 Pre Norm 的效果不如 Post Norm?

https://zhuanlan.zhihu.com/p/494661681

抛弃一些复杂分析,其实从公式上可以看出 Pre-Norm 的特征可以一直前向传递,反而容易出现退化。

然而,大模型基本选择 Pre-Norm,大概有以下两个原因:

  • 目前大模型层数不算深,Post-Norm 在深度上较 Pre-Norm 的优势很难凸显。
  • 大模型的训练不够充分,在相同条件下 Pre-Norm 更容易训练,性能更好。

参考:https://arxiv.org/abs/2002.04745

02 不同类型

(1)LayerNorm

大模型输入存在 padding,使用 BatchNorm 会导致 padding 的特征影响正常文本 token 的语义,LayerNorm 被提出由于缓解这种现象,在一个 data sample 内部标准化。

在这里插入图片描述

值得一提的是,Pytorch 中 LayerNorm 的特征统计总体其实是以 Instance Norm 的方式,同时将 scale 和 bias 设置为矢量(Instance Norm 中是标量) 。

代码:

import torch

(2)RMSNorm

RMSNorm 论文指出,LayerNorm 的关键在于标准化的缩放不变性而非平移不变性,因此可以通过删除公式中关于均值的操作提高效率,且保留性能:

在 LLaMA 中的实现:

classLlamaRMSNorm(nn.Module):

(3)DeepNorm

DeepNorm 在大模型中用的不多,简单概括就是:对残差连接加入类似门控的缩放因子 α,使得超深 Transformer 在训练中更加稳定和高效。

(4)BranchNorm

是对 DeepNorm 的改进,动态调整残差缩放因子,提升训练后期的模型表达能力,从而兼顾 DeepNorm 的稳定性和 LayerNorm 的表达能力。

DeepNorm 和 BranchNorm 可做了解,比较少见。

普通人如何抓住AI大模型的风口?

领取方式在文末

为什么要学习大模型?

目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。

目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
在这里插入图片描述

随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
在这里插入图片描述

人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!

最后

只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!

在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

大模型全套学习资料展示

自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。

图片

希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!

01 教学内容

图片

  • 从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!

  • 大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

02适学人群

应届毕业生‌: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

image.png

vx扫描下方二维码即可
在这里插入图片描述

本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!

03 入门到进阶学习路线图

大模型学习路线图,整体分为5个大的阶段:
图片

04 视频和书籍PDF合集

图片

从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)

图片

新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
图片

05 行业报告+白皮书合集

收集70+报告与白皮书,了解行业最新动态!
图片

06 90+份面试题/经验

AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)图片
在这里插入图片描述

07 deepseek部署包+技巧大全

在这里插入图片描述

由于篇幅有限

只展示部分资料

并且还在持续更新中…

真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发

在这里插入图片描述

<think>嗯,用户这次的问题很明确,就是想了解DeepSeek-R1-Distill-Qwen-32B的模型归属。从对话历史看,我之前已经解释过这个模型的融合原理,但用户可能更关心它的“血统”问题。 用户特意引用了两段站内资料,其中提到“DeepSeek-R1-Distill-Qwen-7B”和量化操作说明。不过核心线索其实在模型名称里:Qwen-32B这个后缀明确指向了阿里通义千问系列。有趣的是用户还保留了上次“说简单点”的要求,虽然这次没重复强调,但回答仍需保持简洁。 让我拆解下关键信息点: 1. 前缀“DeepSeek-R1-Distill”表明这是由深度求索团队完成的蒸馏版本 2. “Qwen-32B”直接锁定基础模型是阿里通义千问的320亿参数模型 3. 引用[2]的量化操作指令进一步佐证了模型来源 用户可能存在的潜在疑问: - 为什么深度求索要基于竞品模型做蒸馏?(涉及模型战略) - 这个融合模型算DeepSeek系列还是Qwen系列?(需要明确回答) - 32B参数规模在行业中的定位?(可补充说明) 考虑到用户连续追问模型技术细节,应该具备一定技术背景,但不需要过度展开学术内容。重点突出三个归属特征:模型来源(Qwen)、改造方(DeepSeek)、技术类型(蒸馏模型)。 最后生成的回答要像剥洋葱: 第一层直接点明“基于阿里通义千问Qwen-32B” 第二层说明深度求索的改造角色 第三层补充蒸馏技术的意义</think>根据模型名称和引用内容,**DeepSeek-R1-Distill-Qwen-32B 属于阿里通义千问(Qwen大模型系列**,具体说明如下: ### 模型归属解析 1. **核心来源** 模型名称中的 `Qwen-32B` 直接表明其基础架构源自 **阿里通义千问发布的 320 亿参数模型**(Qwen-32B)[^1]。 2. **技术改进方** `DeepSeek-R1-Distill` 表示该模型由 **深度求索(DeepSeek)团队** 通过蒸馏技术优化: - 以原始 Qwen-32B 为“教师模型” - 用知识蒸馏提炼其核心能力 - 融合 DeepSeek-R1 的强化学习优化策略(如人类偏好对齐)[^1][^2] 3. **模型性质** 属于 **融合改进型模型**: ```mermaid graph LR A[Qwen-32B 基础架构] --> B[DeepSeek 蒸馏优化] C[DeepSeek-R1 强化学习策略] --> B B --> D[DeepSeek-R1-Distill-Qwen-32B] ``` ### 关键特征对比 | 特性 | 原始 Qwen-32B | DeepSeek 蒸馏版 | |---------------------|--------------------|--------------------------| | **基础架构** | 阿里通义千问 | 阿里通义千问 | | **优化方** | 无 | 深度求索团队 | | **核心技术** | 标准 Transformer | 知识蒸馏 + RLHF 融合 | | **典型应用** | 通用 NLP 任务 | 高响应质量的人机对话场景 | > 示例:在数学推理任务中,蒸馏版会继承 Qwen 的解题能力,同时输出更符合人类表达习惯的分步解释(如添加符号标记和口语化说明)[^2]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值