前两篇中分别讲解了自注意力(Self-Attention)和Softmax,它们是大语言模型(LLM)中核心的计算模块。自注意力帮助模型从输入序列中自主学习哪些位置更相关,Softmax 将注意力分数转化为概率分布,为后续计算提供权重。今天我们来介绍在深层神经网络训练中的一个关键主角残差连接(Residual Connection)。
01
为什么需要“残差”连接?
在大型语言模型(LLM)中(比如 Transformer)信息会依次经过多个模块的加工,比如:
- 自注意力模块(理解词语之间的关系)
- 前馈网络模块(提取更深层的特征)
传统做法是:每个模块处理完信息后,将输出交给下一个模块,就像流水线那样。但现代大模型(比如 GPT、BERT、Claude)拥有几十层甚至上百层神经网络结构,就像“千层蛋糕”一样,但层数越多,越容易遇到两个问题:
-
*网络退化***:**你以为层数越多模型越强,但有时反而精度下降,训练更难
-
*梯度传导困难*:训练信号(梯度)难以顺利传播回前层,学习速度慢甚至失败。
这就像耳语传话的游戏,从第一个人到最后一个人传递同一个信息,每传递一次,信息就可能因听力误差或主观联想被修改,或者是有人加一些添油加醋的噪音信息,原始信息就会被逐渐“淹没”。在神经网络层数过多时,模型可能因优化难度增加而 “学偏”,无法拟合真实数据分布,或者过度拟合噪声,导致精度下降等。
*所以,在神经网络复杂的层次结构中,由于信息传递链条越长,保持完整性和准确性的难度越高*,而深度学习的残差连接、归一化层(下一节)等技术,正是为了缓解这类问题。
02
“残差”连接如何工作?
在神经网络中,残差连接(Residual Connection)就像这样一条“捷径”:它让信息在经历中间复杂的处理步骤的同时,还直接从输入传递到输出,以合并信息。
如果把每一层看作是流水线中的一个加工环节,那么残差连接就是:
把“原材料”(输入)和“半成品”(这一层的输出)直接相加,再送入下一层。你可以认为每一层的输出是:
输出 = F(x) + x
其中:
x
是输入(原始信息)F(x)
是经过模块(比如自注意力)的处理结果
输入信息(原材料)不仅通过了自注意力模块(加工机器),还通过一条额外的“连接线”直接与自注意力模块的输出结果“相加”,最终形成新的输出。这条直接连接输入和输出的“线”,就是我们所说的“残差连接”。
这样,每一层都把“原始信息”直接传递下去,就能够确保“大方向”不偏。而且即使 F(x) 表现不佳,网络依然可以退化为“恒等映射”,起码不会破坏输入信息。这也让梯度反向传播更稳定,因为梯度可以沿着残差路径“直达”前层,减少衰减。(反向传播与梯度下降翻阅:中学生就能看懂:从零开始理解LLM内部原理【二】|神经网络如何被训练?)
03
“残差”连接为什么可以工作?
你可能会问:为什么能直接把输入和输出相加?答案是:**它们“形状一致”,也就是“大小相同”。还记得吗,**在神经网络里,“信息”通常表示成一组数字(向量),它的“大小”通常用“维度”来表示,你可以简单地理解为,这是描述信息所需的不同“方面”或“特征”的数量。比如:
x = [1.0, 2.5, -0.3]F(x) = [0.5, -1.5, 0.2]
这是两组纬度相同的信息表示(当然实际的表示要复杂的多),它们就可以相加。
为此,神经网络的设计者会确保模块的输出和输入“尺寸对齐”,就像工厂中不同机器之间必须有相同宽度的传送带才能对接一样。
这样我们就可以顺利地进行“残差连接”这个操作了。
残差连接看似只是在层与层之间多做一次“相加”,却能让深度模型的训练变得稳健、层数可以任意堆叠,也正是 Transformer、GPT 等大语言模型能够轻松达到上百层的关键手段之一。
如何学习AI大模型 ?
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。【保证100%免费】🆓
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
👉1.大模型入门学习思维导图👈
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
对于从来没有接触过AI大模型的同学,我们帮你准备了详细的学习成长路线图&学习规划。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。(全套教程文末领取哈)
👉2.AGI大模型配套视频👈
很多朋友都不喜欢晦涩的文字,我也为大家准备了视频教程,每个章节都是当前板块的精华浓缩。
👉3.大模型实际应用报告合集👈
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(全套教程文末领取哈)
👉4.大模型落地应用案例PPT👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。(全套教程文末领取哈)
👉5.大模型经典学习电子书👈
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。(全套教程文末领取哈)
👉6.大模型面试题&答案👈
截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。为了让大家更容易上车大模型算法赛道,我总结了大模型常考的面试题。(全套教程文末领取哈)
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习
CSDN粉丝独家福利
这份完整版的 AI 大模型学习资料已经上传CSDN,朋友们如果需要可以扫描下方二维码&点击下方CSDN官方认证链接免费领取 【保证100%免费】
读者福利: 👉👉CSDN大礼包:《最新AI大模型学习资源包》免费分享 👈👈