(图片来源:张闯,北京物资学院)
毫无疑问,还是有很大收获的,至少能看到别的大学的老师是如何将人工智能用于高等教育课程的,同时思考是否也该跟上时代步伐,改革自己的课程呢?
学习时课程展示居多,对于如何做出来的智能教育系统讲得并不多。而且对于这些系统有些专家称为大模型,有些称为智能体,到底是大模型还是智能体呢?
一、 什么是大模型?
大模型(Large Language Model, LLM)是一种基于海量数据训练的、参数规模极其巨大(通常达到数十亿甚至万亿级别)的人工智能模型。它的核心能力是理解和生成人类语言(以及代码)。可以把它想象成一个:“博览群书的超级大脑”。它读完了互联网上几乎所有的书籍、文章、代码、网页,从而学会了语言的模式、语法、事实知识以及逻辑推理能力。
大模型的关键特点:
1.规模巨大:参数越多,模型能学习和存储的知识与模式就越复杂,能力通常也越强。
2.生成能力:它不是简单的搜索和匹配,而是能够创造性地生成全新的、连贯的文本内容,比如写故事、作诗、写邮件。
3.通用性强:同一个模型可以不经过大的改动,就能完成翻译、问答、摘要、编程等各式各样的任务(这被称为“涌现能力”)。
4.以对话为核心:我们通常通过 prompt(提示词)与它进行多轮对话来使用它。
常见的例子:OpenAI的ChatGPT、Google的Gemini、Anthropic 的Claude、Meta 的 Llama系列、中国的文心一言、通义千问等。
目前,已有一些行业大模型出现,如:2023年11月,中国建设科技集团股份有限公司(中国建科)和中国电信集团有限公司(中国电信)联合推出了住房和城乡建设领域首个行业大模型“星辰-住建行业大模型”。该模型基于中国电信的“星辰”语义大模型体系,可为行业提供一站式大模型服务,是首批试商用的12个行业大模型之一,专注于建筑设计、城市管理、智慧住建等领域的智能化应用。
2025年8月10日,由中国中铁隧道局隧道掘进机及智能运维全国重点实验室研发(参与单位:华为技术有限公司、中铁第六勘察设计院集团有限公司、中铁科学研究院集团有限公司、中铁高新工业股份有限公司)的国内首个隧道与地下空间领域垂直大模型——“先锋·隧道大模型”在郑州发布。该模型研发了人机交互深度求索的隧道侠AI助手,具备行业科普、专业问答、行业标准、文本翻译等功能,可辅助编制专项方案和施组。同时,形成了隧道设计BIM可视化、隧道施工评估、隧道装备选型、隧道运维感知与解译等多个应用数智决策新范式。
大模型的局限:
1.知识可能过时:它的知识来源于训练数据,无法实时更新(除非额外设计)。
2.会“胡说八道”:可能会自信地生成错误信息,这被称为“幻觉”。
3.无法直接行动:它只能进行“思考”和“回答”,但无法自己去操作软件、点击按钮或控制物理世界。
二、什么是智能体?
智能体(AI Agent)是一个能够感知环境、进行决策并执行动作以达成特定目标的自治系统。可以把它想象成一个:“配备了大脑、目标和工具的机器人”。它不仅会思考,还会为了完成一个目标而主动采取一系列行动。
智能体的关键组成部分:
1.规划(Planning):“大脑”。负责思考、拆解目标、制定计划。这通常由一个大模型来担任。
2.工具使用(Tool Use):“双手”。智能体可以调用外部工具来扩展自己的能力,比如:搜索互联网获取实时信息。运行代码进行精确计算。调用API来操作软件(如发送邮件、查询数据库、控制智能家居)。
3.记忆(Memory):“笔记本”。存储短期的工作记忆(当前任务上下文)和长期的历史记忆(过去的学习经验)。
4.行动(Action):“执行”。最终通过工具去执行具体的操作,并观察结果,形成一个“感知->思考->行动”的循环,直到目标达成。
常见的例子:AutoGPT、BabyAGI,以及未来所有能帮你自动完成复杂任务的AI应用(如自动订票、自动分析报表并生成PPT的AI)。
三、大模型与智能体的关系
总体来说,大模型和智能体的关系可以概括为:大模型是智能体的“大脑”和“核心引擎”,而智能体是大模型能力的“延伸”和“具身化”应用。
用一个比喻来理解就是:大模型就像是一个博学多才、经验丰富的“专家”。他读过世界上所有的书,知识渊博,文采斐然,能和你流畅对话,也能给出各种建议。智能体就像是一个配备了这位专家的“特种部队”。这支部队不仅有专家的大脑,还有明确的任务(比如“攻下这个山头”)、一套工具(比如地图、望远镜、通讯设备),并且能够自主规划步骤(侦察、部署、攻击),最终完成任务。
他们的关系具体如下:
(一)大模型:智能体的基石与核心
大模型的核心能力是:
1.强大的理解和生成能力:能处理和理解自然语言、代码等多种信息,并生成高质量的文本、代码等内容。
2.丰富的世界知识:在训练过程中学习了海量知识,形成了一个压缩的“知识库”。
3.一定的推理能力:能够进行常识推理、逻辑链条推导和简单的规划。
大模型可以根据不同的维度进行分类,例如训练目标、处理模态、模型架构、参数量级和开放程度等。下表是目前主流的大模型类型划分:
(二)智能体:大模型的赋能与拓展
一个完整的智能体通常包含几个关键组件,而大模型完美地充当了其中最核心的部分:
1.大脑/规划器:由大模型担任。负责理解任务、拆解子目标、制定计划步骤、进行逻辑推理。这是智能体的“思考”中心。
2.工具使用:智能体可以调用外部工具来弥补大模型的不足。例如:
①搜索引擎:用于获取实时信息。
②计算器/代码解释器:用于精确计算。
③API/软件接口:用于执行具体操作,如发送邮件、查询数据库、控制机器人。
④专属知识库:用于获取企业内部的私有知识。
3.记忆:智能体拥有短期记忆(记住当前对话和任务上下文)和长期记忆(存储过去的历史和经验,以便在未来任务中做得更好)。
4.行动与感知:根据规划,通过工具执行动作,并观察动作产生的结果,将其作为新的感知信息输入给“大脑”,形成感知-思考-行动的循环。
(三)两者核心关系:相辅相成,共生共荣
两者的关系主要有如下三种:
1.赋能关系:大模型为智能体提供了前所未有的认知和规划能力,使得构建能处理开放任务的通用智能体成为可能。没有大模型,智能体大多只能是规则简单、功能单一的自动化脚本。
2.扩展关系:智能体通过工具使用和外部交互,极大地扩展了大模型的能力边界,使其从“万事通”变成了“万事能做”,解决了其静态性和无法行动的短板。
3.进化关系:智能体在实际环境中行动产生的结果(成功或失败),可以作为新的训练数据反馈给大模型,从而帮助大模型迭代进化,变得更“聪明”、更“实用”。这就是所谓的“通过实践学习”。
两者关系可用下表来总结:
四、一个简单的例子:
任务:“帮我查一下今天北京的天气,然后用中文写个摘要发到我的邮箱。”
大模型:它可能知道步骤,但无法真正执行。它可能会告诉你:“首先,你需要访问天气网站…然后,你可以写摘要…最后,登录邮箱发邮件…”。
智能体的工作流程(以大模型为大脑):
1.规划:大脑(大模型)拆解任务:①获取天气②写摘要③发邮件。
2.工具使用:调用 search_weather(Beijing) 工具。
3.生成:根据天气信息,用中文写摘要。
4.行动:调用 send_email(summary, my_email) 工具完成任务。
整个过程完全自主,无需人工干预。
可见,大模型和智能体是紧密结合、相互成就的一对概念。大模型是智能体实现“智能化”的关键突破,而智能体则是大模型发挥其巨大潜力的最重要和应用最广泛的形式之一。我们现在看到的大部分还都只是大模型,未来看到的绝大多数AI应用,将以“智能体”的形式出现,而它们的心脏,就是一个或多个强大的人工智能大模型。
普通人如何抓住AI大模型的风口?
领取方式在文末
为什么要学习大模型?
目前AI大模型的技术岗位与能力培养随着人工智能技术的迅速发展和应用 , 大模型作为其中的重要组成部分 , 正逐渐成为推动人工智能发展的重要引擎 。大模型以其强大的数据处理和模式识别能力, 广泛应用于自然语言处理 、计算机视觉 、 智能推荐等领域 ,为各行各业带来了革命性的改变和机遇 。
目前,开源人工智能大模型已应用于医疗、政务、法律、汽车、娱乐、金融、互联网、教育、制造业、企业服务等多个场景,其中,应用于金融、企业服务、制造业和法律领域的大模型在本次调研中占比超过 30%。
随着AI大模型技术的迅速发展,相关岗位的需求也日益增加。大模型产业链催生了一批高薪新职业:
人工智能大潮已来,不加入就可能被淘汰。如果你是技术人,尤其是互联网从业者,现在就开始学习AI大模型技术,真的是给你的人生一个重要建议!
最后
只要你真心想学习AI大模型技术,这份精心整理的学习资料我愿意无偿分享给你,但是想学技术去乱搞的人别来找我!
在当前这个人工智能高速发展的时代,AI大模型正在深刻改变各行各业。我国对高水平AI人才的需求也日益增长,真正懂技术、能落地的人才依旧紧缺。我也希望通过这份资料,能够帮助更多有志于AI领域的朋友入门并深入学习。
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发
大模型全套学习资料展示
自我们与MoPaaS魔泊云合作以来,我们不断打磨课程体系与技术内容,在细节上精益求精,同时在技术层面也新增了许多前沿且实用的内容,力求为大家带来更系统、更实战、更落地的大模型学习体验。
希望这份系统、实用的大模型学习路径,能够帮助你从零入门,进阶到实战,真正掌握AI时代的核心技能!
01 教学内容
-
从零到精通完整闭环:【基础理论 →RAG开发 → Agent设计 → 模型微调与私有化部署调→热门技术】5大模块,内容比传统教材更贴近企业实战!
-
大量真实项目案例: 带你亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
02适学人群
应届毕业生: 无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型: 非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能突破瓶颈: 传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
vx扫描下方二维码即可
本教程比较珍贵,仅限大家自行学习,不要传播!更严禁商用!
03 入门到进阶学习路线图
大模型学习路线图,整体分为5个大的阶段:
04 视频和书籍PDF合集
从0到掌握主流大模型技术视频教程(涵盖模型训练、微调、RAG、LangChain、Agent开发等实战方向)
新手必备的大模型学习PDF书单来了!全是硬核知识,帮你少走弯路(不吹牛,真有用)
05 行业报告+白皮书合集
收集70+报告与白皮书,了解行业最新动态!
06 90+份面试题/经验
AI大模型岗位面试经验总结(谁学技术不是为了赚$呢,找个好的岗位很重要)
07 deepseek部署包+技巧大全
由于篇幅有限
只展示部分资料
并且还在持续更新中…
真诚无偿分享!!!
vx扫描下方二维码即可
加上后会一个个给大家发