自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(588)
  • 收藏
  • 关注

原创 零基础小白入门AI智能体教程:智能体介绍

智能体指能够自主感知环境、做出决策并执行行动 以实现特定目标的智能实体,其核心在于:● 自主性 :无需人工干预,自动拆解任务(如“买咖啡”分解为定位→选店→支付)● 反应性 :实时响应环境变化(如自动驾驶遇行人自动刹车)● 社会性 :多智能体协作(仓储机器人集群调度货物)● 进化性 :通过数据反馈持续优化策略(京东客服智能体处理18%售后问题)AI智能体类似于一个虚拟的“助手”或“代理”。它能够听懂你的话、理解你的需求,并帮你完成任务。

2025-07-18 11:10:00 484

原创 AI智能体(AI Agent)从原理到应用,一篇全部讲清楚!

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!截至目前大模型已经超过200个,在大模型纵横的时代,不仅大模型技术越来越卷,就连大模型相关的岗位和面试也开始越来越卷了。光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战项目来学习。要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。

2025-07-18 10:52:09 354

原创 一文了解RAG(检索增强型生成)

透过RAG技术,我们可以清晰地看到大语言模型如何颠覆传统的信息检索和知识问答领域,通过结合检索与生成的优势,实现了更准确、更智能的知识获取与内容生成。如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括。

2025-07-17 14:00:15 547

原创 大模型在临床医师中的应用现状及心血管医师的需求分析

摘 要目的 探讨中国临床医师对大模型的认知现状及心血管医师的应用需求。方法 本研究为方便抽样的横断面调查。2023年12月,通过自制问卷对7 980名临床医师进行调查,其中包括930名心血管医师。调查内容包括医师基本信息[工作城市(一线城市、新一线城市、二线城市、三线城市及四线及以下城市)、所在医院等级、职称及科室],医师对大模型的认知情况(知晓和使用)与其在临床辅助决策、信息筛选和科研工作中的应用需求。比较不同区域、医院等级、职称、科室的医师对大语言模型认知及需求的差异,并针对心血管医师在各具体需求

2025-07-16 11:47:08 587

原创 Agent协议2.0“三剑客”:MCP协议、A2A协议、AG-UI协议

AG-UI协议就像是给AI应用装上了“智能导航”,让前后端之间的沟通更顺畅、更高效。开发者不用再纠结底层通信的问题,可以专心做真正重要的事——设计能帮用户解决问题的功能。对用户来说,AI变得更懂自己,不再是冷冰冰的工具,而是贴心的助手。不管你是经验丰富的AI开发者,还是刚入门的新手,AG-UI协议都值得你了解一下。它正在带你走进一个更智能的未来,一起探索AI的无限可能。

2025-07-12 11:51:05 388

原创 业界对 Agent 的最大误解:它能解决所有问题

上图是最新更新的 watsonx.data 的简略逻辑架构图,相较于此前的版本集成了数据经纬,通过统一元数据治理增加了语义层(watsonx.data intelligence),用户可以直接进行自然语言提问,比如“某供应商的应付款是多少”,这时候通过语义层就可以找到对应的数据,它可能来自结构化数据,也可能来自文档库中的各种非结构化数据。但以前的自动化流程或者 AI 模型的调用,基本是事先编排好,用历史数据算好,运行的时候没有那么多资源消耗,所需的算力要求很小,CPU 就能跑。

2025-07-12 11:49:53 271

原创 马斯克震撼发布Grok4,地表最强AI归来,全科能力超越人类博士!

给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!马斯克的野心远不止于创造一个聪明的聊天机器人。承认当前在多模态(视觉)上的弱点,并宣布将在数周内完成 V7 基础模型的训练,重点攻克视频理解与生成,目标是"今年产出可观看的电视节目,明年产出 AI 电影"。AI 正从一个"无所不知"的工具,演变为一个"无所不能"的伙伴,甚至是一个独立的"行动者"。

2025-07-11 10:45:40 691

原创 一文看懂 LangChain:为什么火?核心模块都干啥?

LangChain = 「Prompt + 模型 + 工具 + 记忆 + 检索」的组件化框架,用来构建多轮对话、文档问答、Agent 应用的乐高积木库。如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括。

2025-07-10 12:00:16 349

原创 检索增强生成(RAG)是什么?详细介绍分类、挑战与展望!

检索增强生成(RAG)通过融合外部知识库与大型语言模型,已成为解决知识密集型自然语言处理(NLP)任务的关键范式。高质量、多样化的数据集是推动RAG技术发展、评估模型能力和揭示其局限性的基石。本文旨在对RAG领域的关键数据集进行一次系统性的梳理与全景分析。我们基于对30篇核心研究论文的分析,提炼并审查了148个相关数据集,并首次提出一个涵盖六大类别的层次化分类体系,即问答(Question Answering)、事实验证(Fact Verification)、槽填充(Slot Filling)、多模态任务(

2025-07-10 11:28:44 1175

原创 AI术语太难懂?36个核心概念深度解析,从入门到精通!

随着AI的普及和快速发展,越来越多的人开始关注AI,但是深奥晦涩的专业术语,让很多人望而却步,甚至对于人们应用AI产生了一定困难。因此,社区决定对AI领域的热点概念和专业术语进行解读,并配备相应图表以便于大家更形象的理解。我们将从七大方面进行深度解读,方便大家能够更好的进入该领域学习和应用。

2025-07-09 11:51:35 890

原创 大模型原理介绍

下面给出了一个例子,这是来自 Meta 的 LLaMA 模型的数据混合(data mixture)方法:可以看到,LLaMA 的预训练数据按不同比例混用了多个不同类型的数据集,其中比例最大的是爬取自互联网的 CommonCrawl 以及基于 CommonCrawl 构建的 C4,此外还有 GitHub、维基百科等数据集。举个例子,如果词汇库的大小为 50257 个 token,那么我们就需要同样多的数字,以便得到下一个 token 的概率分布,其预测了下一个 token 的可能值及相应概率。

2025-07-09 11:00:56 993

原创 为什么说事件驱动才是AI代理的终极形态?

智能代理时代已经来临,EDA 将决定谁能掌控这场架构变革。✨EDA 给你的不是选择题,而是生存题。现在行动,就能走在 AI 架构创新的前沿!如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。我意识到有很多经验和知识值得分享给大家,故此将并将重要的AI大模型资料包括。

2025-07-08 10:27:03 607

原创 从零开始学 Dify - 万字详解 Dify 循环和迭代的实现机制

Dify 是一个强大的 AI 应用开发平台,其工作流引擎支持复杂的循环和迭代操作。接下来将深入分析 Dify 中循环和迭代的实现机制。循环(Loop):根据条件重复执行一组操作,直到满足退出条件迭代(Iteration):对集合中的每个元素执行相同的操作。

2025-07-08 10:09:32 1691

原创 AI智能体+自媒体获客:用扣子(Coze)一键打造自己的口播数字人视频(建议收藏)

通过本文的介绍,我们学会了如何使用Coze工作流和飞影数字人插件,轻松打造一个专业的口播数字人智能体。这套方案不仅让我们摆脱了出镜的困扰,还能大大提升内容创作的效率。希望这个方法能帮助你更好地传递价值,创作出更多优质的内容。你的每一次互动都是我持续创作的动力!如何学习AI大模型?“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

2025-07-04 10:35:07 1101

原创 一句话出全套设计的AI智能体神器!Lovart国内版终于等到了

底端左侧“July 2025”,极小号字体,横向排布;提示词:一张电商海报设计,平行透视,产品突出放大,绿色草坪上有一瓶时尚高端化妆品透光,周围很多植物簇拥着,若隐若现的小溪折射着光芒,背景有模糊朦胧的花朵和蓝天白云,真实的照片,极致的清晰度和细节,大师级摄影,强烈的光影,不需要文字,产品要突出。给你学习,我国在这方面的相关人才比较紧缺,大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

2025-07-04 10:15:59 1449

原创 大模型算法工程师面试题,看这一篇就够了!

春季招聘(简称春招)是诸多互联网领军企业面向在校学生的实习生招募活动,通常在春节假期结束后不久便启动简历接收流程,如阿里巴巴等企业在新年伊始即展开行动;而整个春招周期可能延续至五六月份,像美团等公司在这一阶段仍可能安排面试环节。春招的核心目标在于通过获取在大型互联网企业的实习岗位,从而把握住转为正式员工的机会,或者积累宝贵的实习经验以增强秋季校园招聘时的竞争力。

2025-07-03 11:44:07 1246

原创 使用LangGraph和LangSmith构建多智能体AI系统(一)

有了State和Nodes后,下一步是通过**边(Edges)**将它们连接起来,以定义图谱的执行流向。普通边(Normal Edges)简单直接,始终从一个特定节点指向另一个节点。条件边(Conditional Edges)动态路由,通过Python函数检查当前State,决定下一步执行的节点。对于我们的ReAct智能体,需要一个条件边来检查调用工具:如果LLM决定调用工具,则路由至执行;结束流程:如果LLM直接给出最终回复(无工具调用),则终止该子智能体的执行。为此,我们定义。

2025-07-03 11:00:45 949

原创 2025年,建议你一定要用 AI 搭建个人知识库

HR后来透露,会用AI的那个员工在处理问题的速度是另一个的3倍,遇到复杂问题时能瞬间从AI知识库中找到解决方案,而不会用的还在翻文档磨磨唧唧。这件事情就让我后背发凉了许久!2025年了,AI使用能力已经不是什么加分项,而是生存必需品了。不会用AI工作的人,正在被这个时代抛弃。为什么我建议你一定要搭建AI知识库使用传统笔记软件有两个痛点:第一个是整理麻烦。每次存资料都要想分类、打标签,花的时间比记笔记还多。不整理吧,后面肯定找不到;整理吧,又特别费时间。第二个是使用困难。

2025-07-02 14:19:24 782

原创 【Dify+deepseek+MCP】从入门到精通,手把手教你效率开挂(六)dify工作流秒变MCP工具

大家好,这是我的专题《AI颠覆人类倒计时:普通人自救指南》系列文章之一。前期有几篇关于dify agent中如何使用多个不同的MCP工具让Agent具备多种不同的技能。那么,应该如何实现呢?分为如下三个步骤:\1. dify工作流发布为工具\2. 安装配置MCP服务器插件,并完成工具配置\3. 获取MCP链接进行调用先前的文章中,我们使用dify和DeepSeek创建过不少的工作流,此处我们可以选取自己想要作为MCP工具被调用的工作流,发布为工具。

2025-07-02 13:52:18 682

原创 从FiDRAG到GraphRAG,RAG选型终极指南

***其优势在于能够做****

2025-06-30 11:46:40 626

原创 AI 正在变身!“AI Agents”退场,“Agentic AI”登场,背后发生了什么?

AI Agents通常是为了执行特定任务而构建的。它们的设计目的是帮助你完成某些工作——比如回答问题、整理日程表,甚至管理你的电子邮件收件箱。AI Agents非常擅长自动化简单、重复的任务,但它们没有像Agentic AI那样的自主性或决策能力。可以把它们看作是虚拟助手,它们会按你的指令行事,而不会自己进行思考。从本质上讲,Agentic AI是一种强调自主性的AI类型。它有点像一个虚拟助手,可以进行思考、推理并适应变化的环境,而无需持续的指导。Agentic AI的工作可以分为四个关键阶段1.*感知*

2025-06-30 11:41:24 788

原创 关于Agent智能体的开发心得——从人的角度去理解智能体

智能体中,大模型就是人,工具就是人使用的工具,提示词就是你想让大模型做什么,以及怎么做。智能体作为AI领域潜力无限的一个应用方向,很多技术从业者都扑在了智能体上,同时也有更多的人想入行智能体开发;但面对智能体领域各种乱七八糟的新概念,新名词很多人都不知道该从哪下手,以及怎么下手。特别是智能体是结合大模型LLM+Prompt+Tools组成的一个复合概念;最重要的是很多人刚开始很难弄明白大模型都是干啥的,以及应该怎么干。从人的角度理解大模型和智能体。

2025-06-27 11:17:00 632

原创 为何多数AI Agent在落地应用中失败——以及如何打造成功的AI Agent

我是一名拥有8年以上经验的机器学习工程师,专注于构建可投入生产的AI智能体。刚开始时,我和大多数人一样犯了一个错误:一味追求炫酷的演示效果,而忽略了构建一个能经受真实生产环境考验的系统。起初一切顺利。原型看起来聪明、响应迅速,还用上了最新的开源库。但一旦接触到真实用户环境,问题就接踵而至——边缘案例频出漏洞、智能体可靠性堪忧、日志记录事后才补,至于扩展性?根本无从谈起。我意识到自己构建的不是真正的系统,只是个玩具。

2025-06-27 10:17:04 745

原创 一文看懂大模型热门核心概念:LLM、Prompt、AI Agent、RAG...

大模型(

2025-06-26 12:04:19 599

原创 股票预测专用的时间序列预训练模型

股票选择是金融中的关键任务,现有方法主要关注模型结构和图构建,预训练策略尚未深入探索。当前的股票序列预训练方法未适应金融数据的独特特性,忽视了股票特定的上下文信息和价格的非平稳性。本文提出三种针对股票数据特征的预训练任务:股票代码分类、股票行业分类和移动平均预测。开发了基于两层变换器架构的股票专用预训练变换器(SSPT)。实验结果表明,SSPT在五个股票数据集上表现优于市场和现有方法,尤其在累计投资回报率和夏普比率方面。对模拟数据的实验探讨了方法的潜在机制,提供了对价格序列理解的见解。

2025-06-25 14:01:14 688

原创 dify案例分享-用 Dify 工作流 搭建数学错题本,考试错题秒变提分神器-同类型题生成篇

错题本是一种学习工具,用于记录和总结学生在学习过程中做错的题目,以便找出学习中的薄弱环节,提高学习效率和成绩。一下是错题本定义、作用、建立方法、使用技巧等内容。\1.定义:错题本是指中小学学生在学习过程中,把自己做过的作业、习题、试卷中的错题整理成册,便于找出自己学习中的薄弱环节,使得学习重点突出、学习更加有针对性、进而提高学习效率和学习成绩的作业本。错题本也叫“摘错本”、“纠错本”、“改错本”或“错题集”。\2.作用•查漏补缺。

2025-06-25 11:58:23 1071

原创 抓住风口!中国这4个专业人才紧缺,上百万缺口等你来填

中国经济与科技快速发展,带来的是产业结构不断优化调整,而产业结构的调整与洗牌则是代表各行业对市场人才的不同,比如IT、人工智能、机器人、电子信息等行业,市场人才需求大,相关专业毕业生易就业。那么,你知道吗?中国人才紧缺的4个大学专业是哪几个吗?随着5G商用、电动车、物联网、消费电子等产业的快速发展,市场对集成电路产业需求量激增。据数据统计:2024年全球集成电路市场规模达到1800多亿美元,中国是全球最大的集成电路市场,占全球市场份额的30.1%,并且未来几年,中国市场将以7.7%复合年增长率增长。

2025-06-24 11:13:47 1786

原创 Anthropic实践发现:Multi-Agent系统的核心仍然是Prompt设计!

近期Anthropic分享了他们在构建多智能体(multi-agent)研究系统的最佳实践,核心是Claude 现在具备研究能力,能够通过网络搜索、Google Workspace 以及任何集成工具来完成复杂的任务。Anthropic多智能体研究系统的架构采用协调者-工作者模式:系统采用一个首席智能体(Lead Agent)和多个子智能体(Subagents)的架构。首席智能体负责协调和分配任务,子智能体并行执行具体任务。

2025-06-24 11:00:43 577

原创 【Dify+deepseek+MCP】从入门到精通,手把手教你效率开挂

在开始给大家进行MCP的案例演示之前(正式发车),我们需要先。👋👋👋)“目前有哪些主流平台/三方工具支持MCP?“从哪里找到最新的MCP三方工具?从下图可知,大模型(Host)跑在MCP客户端(Client)上,我们完成任务所需要的工具和数据跑在MCP 服务器(Server)上。服务器和客户端之间,通过MCP协议进行通信和连接。因此,我们。我们通过客户端和服务器的组合,就可以实现特定的任务。快速**了解客户端和服务器有哪些关键能力,**便于判断MCP客户端和服务器能力。

2025-06-23 12:00:21 658

原创 灵丹:利用大模型提升传统中医知识在临床推理任务中的编码能力

近年来,大型语言模型(LLMs)在各个领域蓬勃发展,但在传统中医药(TCM)领域的应用尚未完全实现。本研究旨在通过开发一个针对中医药知识定制的大型语言模型来填补这一差距,提高其在临床推理任务(如诊断、治疗和处方推荐)中的性能和准确性。本研究利用了丰富的中医药数据资源,包括中医药古籍、教科书和临床数据,创建了3个关键数据集:中医药预训练数据集、中成药专利药问答数据集和脾胃草药处方推荐数据集。

2025-06-23 11:55:07 992

原创 NC 2025 | 一种基于端到端注意力机制的图学习方法

​ 近期,基于 Transformer 的图学习架构蓬勃发展,主要原因是注意力机制作为一种有效的学习机制,以及其取代消息传递方案中手工编写算子的愿望。然而,人们对其经验有效性、可扩展性和预处理步骤的复杂性提出了担忧,尤其是在与那些通常在各种基准测试中表现相当的简单图神经网络相比时。为了解决这些缺陷,作者将图视为边的集合,并提出了一种纯粹基于注意力机制的方法,该方法由一个编码器和一个注意力池机制组成。

2025-06-21 11:54:35 988

原创 AI大模型在金融领域的综述!

本综述调查了大语言模型(LLM)在金融领域的应用,重点关注现有解决方案。我们回顾了利用预训练模型、微调特定领域数据以及从头开始训练定制LLM的方法,为金融专业人士根据数据、计算和性能需求选择合适的LLM解决方案。最后,我们讨论了金融应用中利用LLM的局限性和挑战,为金融人工智能提供路线图。

2025-06-19 11:48:58 1056

原创 大模型只是一个可插拔组件,提示词才是大模型应用的核心——提示词在大模型应用中扮演的重要角色

大模型只是一种可插拔组件,提示词才是核心。关于提示词的重要性应该没什么好说的了,可以说现在所有的基于大模型构建的应用都是以提示词作为核心切入点;不管是RAG还是智能体,无外如是。对从事大模型应用的开发者来说,重要的不是大模型的部署和运维,其核心是怎么写好提示词;以目前市面上的开发框架或开源项目来看,大模型都是一个可插拔的组件,只要配置好模型参数,在业务场景中可以随意切换不同的模型。模型只是可插拔组件,提示词才是应用的灵魂现在关于大模型的应用千奇百怪涉及到各种领域,但如果我们真的深入研究会发现;

2025-06-19 11:40:55 964

原创 多智能体真不是概念股,github上top5多智能体框架总结!

gitbub上最火的5个多智能体框架MetaGPT、agno、ChatDev、owl、camel,截至今天star数分别为56.1k、27.7k、27.0k、16.8k、12.8k。每个都在1w star以上!试想,你只需输入一句“Create a 2048 game”,就能自动生成一个完整的游戏项目仓库,包含用户故事、代码架构、API文档等全流程产出。这不是科幻场景,而是MetaGPT的真实能力展示。(图示:MetaGPT模拟软件公司协作流程,从需求到代码的全链路产出)此外还可以构建AI狼人杀、AI辩论赛

2025-06-18 11:23:27 340

原创 硬核解读:Qwen3 Embedding如何打败 Google?

语言模型的革命已经进入了。

2025-06-18 10:53:45 381

原创 纯Prompt提示LLM的多阶段知识图谱三元组抽取及Schema生成方案

我们来看看一个纯,例如图中的实体节点(蓝色)和事件节点(绿色)是从文本中提取的,而概念节点(橙色)则是通过模式归纳获得。方法来自于《》,https://arxiv.org/pdf/2505.23628,其思路很粗暴,就是,地址在https://github.com/HKUST-KnowComp/AutoSchemaKG,核心的核心就是一堆prompt,多阶段,很工程化。

2025-06-16 12:01:47 886

原创 用DeepSeek+扣子智能体,从0到1搭建对标账号监控智能体(喂饭级教程)

对标账号监控是一种竞品分析方法,主要用于跟踪和分析对标账号在短视频平台上的内容表现。• 内容采集:实时采集竞争对手发布的内容、发布频率和内容主题• 趋势洞察:发现竞争对手内容中的热门主题通过对标账号监控,我们能及时掌握行业动态和竞争对手动向,发掘新的选题机会,从而优化内容策略和运营方向。通过本文,我们学习了如何构建一个对标账号监控智能体,它可以帮助我们自动收集和分析竞争对手的短视频数据。让我们回顾一下关键要点。对标账号监控帮助我们了解竞争对手动向,及时调整自己的内容策略。

2025-06-16 11:52:59 1382

原创 从0到1打造一套AI智能体获客系统(万字图文)

这篇文章以AI获客智能体为例,给大家演示一下,怎么从零开始手搓一个智能体。我们先搞清楚这个AI智能体的定位和目标,找出业务中的痛点。比如说短视频选题、剪辑、发布这些环节,看看哪些活儿可以交给AI,哪些还得靠人来做。然后,以AI获客中的对标账号拆解智能体为例,手把手教你用各种工具搭建工作流、抓取数据、提取文案、生成报表,最后把它包装成一个能使用AI智能体。随着各种插件和工具越来越厉害,AI智能体能帮我们干的事情会越来越多!

2025-06-13 09:46:51 1248

原创 论文浅尝 | 结合强化学习与大型语言模型的复杂问答协作推理框架(COLING2025)

本文提出了一个基于分层强化学习和大型语言模型的协同推理框架(CRF),旨在解决复杂知识图谱问答(KGQA)任务。该框架借鉴了人类的认知过程,将 LLM 的常识先验和 RL 的环境学习能力相结合,构建了一个分层代理来处理复杂问题。高层代理负责识别推理过程中遇到的约束条件,而低层代理则负责选择 KG 中最有希望的关系进行路径推理。通过将 KGQA 任务分解为约束检测和路径推理两个层次,CRF 模型有效地解决了 LLM 推理中的幻觉问题和 RL 探索中的盲目性问题。

2025-06-12 11:16:01 607

原创 一文讲清楚大模型中8个关键词及原理:LLM、Transformer、GPT、Bert、预训练、微调、深度学习、Token

1. LLM(大语言模型):基于深度学习构建的超大规模语言模型,能理解、生成自然语言并执行复杂任务。\2. Transformer:一种基于自注意力机制的深度学习架构,是当前主流大模型(如 GPT、BERT)的核心框架。\3. GPT(生成式预训练 Transformer):基于 Transformer 的生成式预训练模型,擅长自然语言生成,如文本创作、对话交互。

2025-06-12 10:12:04 920

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除