一、为什么框架选型这么重要?
架构选错,轻则性能差、调不动,重则成本高、推不动。 特别是 AI Agent,这不是一个“大模型 + 前端”的简单组合,而是任务分解、记忆管理、工具调度等模块的 复杂编排系统。
一个合适的 Agent 框架,决定了你AI应用落地的速度与质量。
二、10 大热门框架对比
框架 |
优势亮点 |
适用场景 |
使用建议 |
---|---|---|---|
LangChain |
功能最全:RAG、多工具、记忆系统 |
开发复杂应用系统 |
技术门槛高,需懂链式调用 |
Dify |
低代码、支持拖拽搭建 |
企业快速验证场景 |
灵活性一般,适合简单应用 |
AutoGen(微软) |
多Agent协作,支持人类参与 |
自动化流程设计 |
配置繁琐,资源开销大 |
CrewAI |
多角色分工清晰 |
多任务协作、客服 |
分工设计合理才有用 |
LangGraph |
控制逻辑强、支持DAG流程图 |
多轮对话系统 |
适合技术架构师主导 |
Semantic Kernel |
多语言支持,集成能力强 |
企业系统对接 |
功能基础但稳定可靠 |
ChatDev |
对话驱动开发 |
智能客服、任务分配 |
可视化强,但不通用 |
Phidata |
数据处理、向量分析强 |
金融、客服数据分析 |
Python基础是门槛 |
Swarm(OpenAI) |
实验性Agent调度器 |
Agent编排实验项目 |
生态尚未完善,尝鲜可试 |
Responses API |
高度交互响应 |
聊天、客服系统 |
功能还在更新中 |
三、5 个后起之秀框架推荐
-
🧰 Lindy:拖拽式构建,适合不写代码的运营或产品
-
📚 Haystack Agents:RAG+搜索专家,适合构建问答系统
-
⚡ FastAgency:高并发、低延迟,适合秒级响应类平台
-
🎧 Rasa:经典会话机器人,适合语音/客服Bot
-
🪶 SmolAgents:极简Python Agent调度器,轻量工程项目适配
四、框架怎么选?四步选型法来了!
选型不是选最强,是选最合适
1. 先问清楚目标是什么
场景 |
推荐框架 |
---|---|
快速搭出原型 |
Dify / Lindy |
多Agent对话协作 |
AutoGen / CrewAI |
企业系统集成 |
Semantic Kernel / Haystack |
高并发响应类服务 |
FastAgency |
自主控制/扩展性高 |
LangChain / LangGraph |
2. 看你团队有没有“开发能力”
-
有开发团队:LangChain、LangGraph、Phidata
-
非技术主导:Dify、Lindy、ChatDev
3. 小步试错,快速验证
搭一个 Demo,花3天验证“是不是合适”,比 PPT 评估强10倍
4. 看社区活跃度 + 私有部署能力
能不能部署在自己服务器里?能不能支持国产大模型?有没有常用工具包?
五、相关链接建议
想深入了解这些框架?可以参考这些官方文档:
-
LangChain 官网:https://docs.langchain.com/
-
Dify 文档:https://docs.dify.ai/
-
Microsoft AutoGen:https://github.com/microsoft/autogen
-
CrewAI:https://docs.crewai.io/
-
Semantic Kernel:https://github.com/microsoft/semantic-kernel
最后提醒
别追最热的,追最贴你的。
Agent 框架不是越贵越好,也不是越新越香,适合你的开发能力 + 使用场景 + 资源状况,才是最优解。
六、如何学习AI大模型?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓