面试必考!大模型Agent全解析:定义、特征、流程一文搞定!

1、Agent的定义与演进

在传统人工智能领域,Agent(智能体) 通常指的是一种能够感知其所处环境、基于感知进行决策,并能通过执行器(actuators)采取行动以达成特定目标的自主实体。Agent的核心在于其自主性(autonomy)和目标导向性(goal-oriented)。

而我们今天重点讨论的大模型Agent,特指以大型语言模型(LLM)作为其核心认知引擎和“大脑”的AI智能体。这类Agent不仅继承了LLM强大的自然语言理解、生成、知识储备和一定程度的逻辑推理能力,更重要的是,它们通过整合特定的机制,如任务规划(Planning)、记忆存取(Memory)、以及工具调用(Tool Use),从而能够自主地理解复杂指令、分解任务、制定并执行计划,与外部环境和工具进行交互,最终完成用户设定的目标。

您可以将大模型Agent想象成一个拥有超级大脑(即大模型)的智能助手。它不仅仅能像聊天机器人一样与您对话、回答问题,更能主动地为您执行一系列复杂的任务。比如,您让它写一份市场分析报告,它不仅能理解您的要求,还能自己上网搜集相关数据(使用搜索引擎工具)、整理分析数据(可能调用数据分析工具或代码解释器)、撰写报告初稿,甚至根据您的反馈进行修改,整个过程高度自动化。

Agent的概念经历了漫长的演进:

  • 早期Agent: 多基于符号AI和规则的专家系统,能力局限于特定领域,缺乏泛化性。
  • 基于机器学习的Agent: 随着机器学习,尤其是强化学习(Reinforcement Learning)的发展,Agent开始能够通过与环境的交互和试错来学习最优策略,例如AlphaGo。
  • 大模型驱动的Agent: LLM的出现为Agent带来了认知能力的飞跃。LLM赋予了Agent前所未有的自然语言交互能力、丰富的世界知识和初步的常识推理能力,使其能够处理更开放、更复杂的任务,并与人类以更自然的方式协作。可以说,业界正在从单纯关注大模型本身,转向关注如何利用大模型构建能够实际解决问题的应用,而Agent正是这一趋势下的重要载体。
2、Agent的核心特征

基于大模型构建的Agent展现出以下几个核心特征,这些特征共同构成了其强大能力的基础:

  • 自主性 (Autonomy): 这是Agent最根本的特征。大模型Agent能够在给定目标后,无需人工持续干预地制定计划、执行步骤、并根据反馈调整行为,形成一个闭环的运作系统。这种自主决策和行动的能力是其区别于简单调用LLM进行问答的关键。
  • 感知与交互 (Perception & Interaction): Agent能够通过多种方式感知外部环境。这包括理解用户的自然语言指令,也包括通过API接口获取外部数据(如网页内容、数据库信息、其他应用的状态),甚至在具身智能场景下接收来自物理传感器的信息。同时,它也能通过语言、API调用等方式与环境或其他Agent进行有效的交互。
  • 规划与推理 (Planning & Reasoning): 这是Agent的“智能”核心。依托LLM的认知能力,Agent能够对复杂任务进行分解,形成一系列可执行的子任务或步骤。它能够进行逻辑推理,制定行动策略,以有效地达成最终目标。
  • 记忆 (Memory): 为了实现连贯的任务执行和从经验中学习,Agent需要记忆能力。这包括短期记忆(维持当前任务的上下文,如对话历史、中间结果)和长期记忆(存储过去的成功/失败经验、习得的知识、用户偏好等)。有效的记忆检索和更新机制对Agent的性能至关重要。
  • 工具使用 (Tool Use): LLM本身并非万能,例如它不擅长精确计算、无法获取实时信息、或直接操作外部软件。Agent通过调用外部工具(如计算器、搜索引擎、代码解释器、数据库接口、各类API服务)来扩展自身能力边界,克服LLM的固有局限性。
  • (发展中的)学习与适应 (Learning & Adaptation): 理想的Agent应该具备从经验中学习并不断优化自身行为策略的能力。这可能涉及到在线学习、强化学习反馈调整、甚至是自我改进规划逻辑和工具使用方式,以适应不断变化的环境和任务需求。
3、Agent的通用工作流程

大模型Agent的运作通常遵循一个迭代的“感知-思考-行动-观察”循环(Perceive-Think-Act-Observe Cycle)。虽然不同Agent框架的具体实现细节可能有所差异,但其核心工作流可以概括为以下几个主要阶段:

在这里插入图片描述

  1. 感知环境 (Perception):
  • 输入: Agent首先接收来自各种来源的信息,这可能包括用户的自然语言指令(例如,“帮我预订明天下午去上海的机票”)、外部数据源的更新(如API返回的天气信息、股票价格、数据库查询结果)、传感器数据(在具身智能场景中),或前一轮行动的结果。
  • 处理: 原始信息通过输入处理器进行解析、清洗和结构化。如果涉及多模态信息(如图像、语音),则需要相应的多模态理解模块进行处理,将其转换为LLM能够理解的格式(通常是文本)。
  • 输出: Agent形成对当前环境状态和任务需求的内部表征。
  1. 思考与规划 (Planning/Reasoning):
  • 输入: 此阶段接收感知模块处理后的环境表征、明确或隐含的用户目标、Agent可用的工具列表及其描述、以及从记忆模块中检索到的相关历史信息或经验。
  • 核心引擎: LLM作为核心“大脑”进行运作。它会运用各种推理策略,如思维链(Chain-of-Thought)来逐步分析问题,或采用ReAct(Reason+Act)框架来交错思考和行动规划,甚至可能使用更复杂的思维树(Tree-of-Thoughts)来探索多种解决方案路径。
  • 输出: 规划模块的输出通常是一个详细的行动计划,可能包括将宏大目标分解为一系列更小、更易于管理的子任务,以及确定下一步要执行的具体动作(例如,调用哪个工具、传递什么参数给工具,或者生成一段特定的文本回复)。
  1. 执行动作 (Action):
  • 输入: 接收来自规划模块的具体行动指令。

  • 执行器:

根据指令,行动模块会调用相应的执行单元。这可能意味着:

  • 调用外部工具API(如向搜索引擎API发送查询请求)。

  • 运行一段代码(如使用代码解释器执行Python脚本进行数据分析)。

  • 与数据库交互(如执行SQL查询)。

  • 生成自然语言回复给用户。

  • 在具身智能中,控制物理执行器完成某个动作(如机器人手臂移动)。

  • 输出: 动作执行后产生的结果。这可能是API的返回值、代码的运行输出、数据库的查询结果、或对外部环境产生的实际改变。

  1. 观察与反思 (Observation/Reflection):
  • 输入: Agent接收并处理动作执行的结果,以及环境可能因此产生的任何反馈或变化。
  • 机制: 此阶段对Agent的智能至关重要。Agent(通常借助LLM)会评估执行的动作是否达到了预期的子目标,与整体目标的差距如何。它会分析成功或失败的原因,从中总结经验教训。如果结果不理想或出现意外情况,可能会触发一个反思过程,导致重新规划。例如,如果调用API失败,Agent可能会尝试使用不同的参数或选择一个备用工具。
  • 输出: 观察和反思的结果会用于更新Agent的内部状态和记忆模块(例如,记录下某个工具在高负载情况下容易超时的经验)。同时,它也可能直接修正当前的行动计划或启动新一轮的规划。
  1. 循环迭代:

    以上四个步骤——感知、思考、行动、观察——通常在一个循环中不断迭代执行。每一次循环,Agent都会根据新的信息和对过去行动的评估来优化其行为,直至最终任务目标达成,或达到预设的终止条件(如最大执行步骤、用户干预等)。

这个循环迭代的过程使得大模型Agent能够展现出动态适应环境、解决复杂问题并从经验中学习的潜力。

AI大模型从0到精通全套学习大礼包

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!

如果你也想通过学大模型技术去帮助就业和转行,可以点扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
在这里插入图片描述

01.从入门到精通的全套视频教程

包含提示词工程、RAG、Agent等技术点
在这里插入图片描述

02.AI大模型学习路线图(还有视频解说)

全过程AI大模型学习路线

在这里插入图片描述

​​在这里插入图片描述

03.学习电子书籍和技术文档

市面上的大模型书籍确实太多了,这些是我精选出来的

在这里插入图片描述

04.大模型面试题目详解

在这里插入图片描述

在这里插入图片描述

05.这些资料真的有用吗?

这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。

所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。

资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。

在这里插入图片描述
在这里插入图片描述

智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念‌,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势‌,构建起"前沿课程+智能实训+精准就业"的高效培养体系。

课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事‌!

在这里插入图片描述
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!

应届毕业生‌:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。

零基础转型‌:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界‌。

业务赋能 ‌突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型‌。

👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值