【导读】LLM真是把审稿人害惨了!NeurIPS 2025评审结果公,全网都被「谁是Adam」爆梗淹没。更离谱的是,有人的审稿建议中,残留了AI提示的痕迹。
这几天,NeurIPS 2025的评审结果,陆续出炉了!
让人措不及防的是,「Who's Adam」明晃晃地出现在了一位作者的审稿建议中,成为近来学术圈最大的笑柄。
究竟是大模型不懂,还是审稿人疏忽了?
这么低级的错误,让AI圈内人直呼:离了大谱!
网友辣评:审稿人会使用LLM,你就偷着乐吧;如果不使用GPT审稿,他们可能连领域内的基本常识都不了解!
「Who's Adam」依旧在发酵的同时,NeurIPS还有更离谱的事发生了。
得克萨斯农工大学计算机系任助理教授涂正中(Zhengzhong Tu)称,自己的审稿建议中,提示词没有删干净。
不过,研究科学家Damien Teney表示可能只是复制错地方了。
研究LLM迁移学习的博士生Dylan也发现自己提交的论文,可能没有被认真对待。
审稿人只是让AI总结了内容,并做了接收与否的决定。
或许,是时候该反思学术界的游戏规则了。
NeurIPS评审爆猛料,全网吵翻了
这届NeurIPS评审,全网吐槽满天飞。
近年来,论文评审的质量一直在下降。原因主要有两种:
其一是,论文数量的增加,大模型加速迭代,协助研究者、初创公司撰写论文,产出效率大增。
其次,优秀的研究人员更专注于模型开发和创业,而非论文评审。
正因如此,才闹出了「Adam是谁」的大笑话。
这份完整版的大模型 AI 学习和面试资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
在AI领域,Adam是深度学习中最常见的优化方法之一,论文被引次数高达220991。
对此,著名机器学习研究员Dan Roy张口大骂,「NeurIPS评审现如今就是垃圾」!
从事AI系统工作的Hanchen Li开玩笑:是不是英文名改成Adam,明年就能被NeurIPS引用了?
审稿人告急,还有DDL
另一方面,能够出现如此荒谬的评审,还与NeurIPS的规定相关——
参与审稿的AI研究员必须在截止日期前完成,否则他们自己的论文直接被NeurIPS拒掉。
有的人就是赶在DDL前,匆忙审稿。
由于审稿人手不够,今年,NeurIPS组委会亲自招募更多的审稿人。
纽约大学助理教授Ravid Shwartz Ziv嘲讽道,「NeurIPS真正的创新之处:领域主席们(AC)在不知不觉中运营着史上最大规模的LLM基准评测」。
另一位网友吐槽道,这是NeurIPS评审的新低点。
会议审稿质量在下降,这大家都知道,但这次NeurIPS评审太离谱了。
Vlad Lialin看到一条神评论:「什么是前向传播」。他认为如果不解决审稿问题,那NeurIPS论文将毫无可行度,跟无人评审的论文没什么两样。
高级机器学习工程师、Keras 3合作者Aakash Kumar Nain表示如果不对认真处理类似问题,他以后不会对学术会议的质量抱有任何希望。
一位亚马逊工程师挖出了,2015年Hinton和谷歌团队一篇关于「蒸馏」技术被NeurIPS拒收的论文。
而如今,「蒸馏」成为当前最火的训练策略。Distilling the Knowledge in a Neural Network这篇被引数超26000次。
从事多模态研究的Weijian Luo,在NeurIPS 2023上发表了学术生涯中的前4篇论文。
NeurIPS这对他意义重大,但这次的审稿质量之低令他沮丧。
他表示是时候认真解决文章评审问题了。
微软研究员Sahar Abdelnabi称NeurIPS的评审意见充满敌意、毫无根据、完全不具建设性,比用LLM生成评审意见还要糟糕。
她建议NeurIPS学习安全会议,加入善意评审指南。
审稿人和作者,双双糊弄?
评审结果不尽人意,你以为只是审稿人的问题吗?
有的研究人员需要一个亮眼的成绩单,利用LLM大量产出论文,何尝不是一大问题呢?
有审稿人爆料称,「自己审了5篇论文,体验简直糟糕透顶」。
-
第一篇明显是LLM生成的。篇幅过短,参考文献失效,既无实验也无理论支撑,还充斥大量低级错误。越读越觉得不知所云
-
有两篇根本是同一篇论文!有人把相同内容改了两个标题重复投稿
-
其中一篇略有新意,但使用了奇怪的数据集——后来发现完全是他们公司内部未公开的私有数据,完全无法复现结果
-
只有最后一篇还算像样
研究过AI+经济的Affaan Mustafa,对学界发生到底发生了什么,非常疑惑。
一方面,为了获得好评,投稿论文注入了系统提示词;另一方面,NeurIPS使用系统提示词来审稿并为论文打分。
这两端都充满了AI生成的垃圾内容。
Rebuttal最佳指南
不论是什么结果,评审意见出了之后,下一步就是Rebuttal阶段了。
那么,作者们如何做,能够为自己赢回更多的胜率呢?
此前,AI初创CEO Devi Parikh写过一篇指南,提供了18种技巧,涉及的案例非常丰富,属于必收藏的系列。
接下来,一起看看都有哪些能实际帮助到的Rebuttal策略吧。
1. 逐条列出审稿人意见
用一个顺手的电子表格来整理每位审稿人提出的具体评论、问题或疑虑。
将所有内容并列一处,有助于我们识别共同关注点,并避免意外遗漏。请尽快完成这一步,以便及早确定是否需要进行新的实验(如果会议允许)或分析。
2. 集思广益,罗列可能的回应
在表格中为每位作者预留一列,用于回应各审稿人的意见。在此处用草稿形式写下所有想法,无需顾及文采或篇幅。说服力和简洁性是通过做减法来实现的。
3. 撰写Rebuttal草稿
将表格中达成的共识,转化为Rebuttal草稿中的具体回应。写作时力求简洁,但暂时不必担心篇幅限制。要覆盖到每一个要点,删减和调整优先级可以留到后面处理。
4. 审查和修改
重读最初的审稿意见和你们整理的表格,确保所有问题都得到了回应。优先处理主要的疑虑,并着手删改以满足篇幅要求。
鉴于此,我们必须清楚,是为谁而写,目标又是什么。
审稿人和领域主席(AC),是最主要的目标。
-
对于审稿人:澄清疑虑、回答问题、纠正误解、Rebuttal不准确的评价,并真诚地努力采纳反馈、改进你的工作。
-
对于AC:说服他们你已做出真诚的努力;呈现一份有代表性的审稿意见摘要;帮助他们判断审稿人的疑虑是否已得到解决;指出不公正的审稿行为;并最终,帮助他们做出决定。
根据作者的经验,研究界的大多数新成员只关注(1),而忽略了(2),下面是一个实操案例:
一定要开门见山。
首先对评审意见进行总结性概述,重点突出审稿人对个人工作的积极评价。
虽然Rebuttal主要针对需要回应的负面意见,但切勿让评审委员会在审阅过程中忽略研究的优势。
之前商界有位名人说过:“站在风口,猪都能吹上天”。这几年,AI大模型领域百家争鸣,百舸争流,明显是这个时代下一个风口!
那如何学习大模型&AI产品经理?
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
只要你是真心想学AI大模型,我这份资料就可以无偿共享给你学习。大模型行业确实也需要更多的有志之士加入进来,我也真心希望帮助大家学好这门技术,如果日后有什么学习上的问题,欢迎找我交流,有技术上面的问题,我是很愿意去帮助大家的!
如果你也想通过学大模型技术去帮助就业和转行,可以点扫描下方链接👇👇
大模型重磅福利:入门进阶全套104G学习资源包免费分享!
01.从入门到精通的全套视频教程
包含提示词工程、RAG、Agent等技术点
02.AI大模型学习路线图(还有视频解说)
全过程AI大模型学习路线
03.学习电子书籍和技术文档
市面上的大模型书籍确实太多了,这些是我精选出来的
04.大模型面试题目详解
05.这些资料真的有用吗?
这份资料由我和鲁为民博士共同整理,鲁为民博士先后获得了北京清华大学学士和美国加州理工学院博士学位,在包括IEEE Transactions等学术期刊和诸多国际会议上发表了超过50篇学术论文、取得了多项美国和中国发明专利,同时还斩获了吴文俊人工智能科学技术奖。目前我正在和鲁博士共同进行人工智能的研究。
所有的视频由智泊AI老师录制,且资料与智泊AI共享,相互补充。这份学习大礼包应该算是现在最全面的大模型学习资料了。
资料内容涵盖了从入门到进阶的各类视频教程和实战项目,无论你是小白还是有些技术基础的,这份资料都绝对能帮助你提升薪资待遇,转行大模型岗位。
智泊AI始终秉持着“让每个人平等享受到优质教育资源”的育人理念,通过动态追踪大模型开发、数据标注伦理等前沿技术趋势,构建起"前沿课程+智能实训+精准就业"的高效培养体系。
课堂上不光教理论,还带着学员做了十多个真实项目。学员要亲自上手搞数据清洗、模型调优这些硬核操作,把课本知识变成真本事!
如果说你是以下人群中的其中一类,都可以来智泊AI学习人工智能,找到高薪工作,一次小小的“投资”换来的是终身受益!
应届毕业生:无工作经验但想要系统学习AI大模型技术,期待通过实战项目掌握核心技术。
零基础转型:非技术背景但关注AI应用场景,计划通过低代码工具实现“AI+行业”跨界。
业务赋能 突破瓶颈:传统开发者(Java/前端等)学习Transformer架构与LangChain框架,向AI全栈工程师转型。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓